Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5...Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.展开更多
为了解决现有方法难以对宽带跳频时分多址(frequency hopping-time division multiple access,FH-TDMA)辐射源网群定位的问题,提出一种仅利用波达方向(direction of arrival,DOA)信息的多站定位及网群划分方法。首先通过模拟滤波对各站...为了解决现有方法难以对宽带跳频时分多址(frequency hopping-time division multiple access,FH-TDMA)辐射源网群定位的问题,提出一种仅利用波达方向(direction of arrival,DOA)信息的多站定位及网群划分方法。首先通过模拟滤波对各站接收到的信号进行频段划分,通过基于多相滤波的数字信道化方法把信号输出到多个信道中;然后通过直接定位(direct position determination,DPD)算法计算得出各时隙辐射源的位置;最后先通过不同参数的基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法选择出最佳的辐射源定位结果,再根据提出的基于先验信息的改进K-means聚类算法进行网群划分。所提方法实现了采样率和信号处理速率的降低,且无需站间严格的时间同步。结果表明,所提方法有效估计出了辐射源的数量、位置,以及网群划分情况。展开更多
针对传统室内定位方法在准确性及稳定性上的不足,本文提出了一种基于信道状态信息(channel state information,CSI)的无源室内定位方法。该方法采用普通设备搭建了实验平台,离线阶段采集CSI数据建立位置指纹库,在线阶段则利用机器学习...针对传统室内定位方法在准确性及稳定性上的不足,本文提出了一种基于信道状态信息(channel state information,CSI)的无源室内定位方法。该方法采用普通设备搭建了实验平台,离线阶段采集CSI数据建立位置指纹库,在线阶段则利用机器学习的朴素贝叶斯算法进行位置分类。为进一步提高分类准确度,本文还提出了置信度方法,通过综合多条天线对的结果来减少位置误判。实验结果表明,本文所提出方法能有效实现对室内人员的无源定位,可以达到90%以上的准确度。展开更多
基金supported by National Natural Science Foundation of China(61304263,61233007)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Arid
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024003)
文摘Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.
文摘为了解决现有方法难以对宽带跳频时分多址(frequency hopping-time division multiple access,FH-TDMA)辐射源网群定位的问题,提出一种仅利用波达方向(direction of arrival,DOA)信息的多站定位及网群划分方法。首先通过模拟滤波对各站接收到的信号进行频段划分,通过基于多相滤波的数字信道化方法把信号输出到多个信道中;然后通过直接定位(direct position determination,DPD)算法计算得出各时隙辐射源的位置;最后先通过不同参数的基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法选择出最佳的辐射源定位结果,再根据提出的基于先验信息的改进K-means聚类算法进行网群划分。所提方法实现了采样率和信号处理速率的降低,且无需站间严格的时间同步。结果表明,所提方法有效估计出了辐射源的数量、位置,以及网群划分情况。
文摘针对传统室内定位方法在准确性及稳定性上的不足,本文提出了一种基于信道状态信息(channel state information,CSI)的无源室内定位方法。该方法采用普通设备搭建了实验平台,离线阶段采集CSI数据建立位置指纹库,在线阶段则利用机器学习的朴素贝叶斯算法进行位置分类。为进一步提高分类准确度,本文还提出了置信度方法,通过综合多条天线对的结果来减少位置误判。实验结果表明,本文所提出方法能有效实现对室内人员的无源定位,可以达到90%以上的准确度。