It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (...It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy.展开更多
Deep learning has risen in popularity as a face recognition technology in recent years.Facenet,a deep convolutional neural network(DCNN)developed by Google,recognizes faces with 128 bytes per face.It also claims to ha...Deep learning has risen in popularity as a face recognition technology in recent years.Facenet,a deep convolutional neural network(DCNN)developed by Google,recognizes faces with 128 bytes per face.It also claims to have achieved 99.96%on the reputed Labelled Faces in the Wild(LFW)dataset.How-ever,the accuracy and validation rate of Facenet drops down eventually,there is a gradual decrease in the resolution of the images.This research paper aims at developing a new facial recognition system that can produce a higher accuracy rate and validation rate on low-resolution face images.The proposed system Extended Openface performs facial recognition by using three different features i)facial landmark ii)head pose iii)eye gaze.It extracts facial landmark detection using Scattered Gated Expert Network Constrained Local Model(SGEN-CLM).It also detects the head pose and eye gaze using Enhanced Constrained Local Neur-alfield(ECLNF).Extended openface employs a simple Support Vector Machine(SVM)for training and testing the face images.The system’s performance is assessed on low-resolution datasets like LFW,Indian Movie Face Database(IMFDB).The results demonstrated that Extended Openface has a better accuracy rate(12%)and validation rate(22%)than Facenet on low-resolution images.展开更多
A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and n...A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process.展开更多
基金National Natural Science Foundation of China ( No. 61070033 )Fundamental Research Funds for the Central Universities,China( No. 2012ZM0061)
文摘It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy.
文摘Deep learning has risen in popularity as a face recognition technology in recent years.Facenet,a deep convolutional neural network(DCNN)developed by Google,recognizes faces with 128 bytes per face.It also claims to have achieved 99.96%on the reputed Labelled Faces in the Wild(LFW)dataset.How-ever,the accuracy and validation rate of Facenet drops down eventually,there is a gradual decrease in the resolution of the images.This research paper aims at developing a new facial recognition system that can produce a higher accuracy rate and validation rate on low-resolution face images.The proposed system Extended Openface performs facial recognition by using three different features i)facial landmark ii)head pose iii)eye gaze.It extracts facial landmark detection using Scattered Gated Expert Network Constrained Local Model(SGEN-CLM).It also detects the head pose and eye gaze using Enhanced Constrained Local Neur-alfield(ECLNF).Extended openface employs a simple Support Vector Machine(SVM)for training and testing the face images.The system’s performance is assessed on low-resolution datasets like LFW,Indian Movie Face Database(IMFDB).The results demonstrated that Extended Openface has a better accuracy rate(12%)and validation rate(22%)than Facenet on low-resolution images.
基金supported by the National Natural Science Foundation of China(No.61272297)
文摘A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process.