期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
A Hierarchical Clustering and Fixed-Layer Local Learning Based Support Vector Machine Algorithm for Large Scale Classification Problems 被引量:1
1
作者 吴广潮 肖法镇 +4 位作者 奚建清 杨晓伟 何丽芳 吕浩然 刘小兰 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期46-50,共5页
It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (... It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy. 展开更多
关键词 hierarchical clustering local learning large scale classification support vector rnachine( SVM
下载PDF
Development of Algorithm for Person Re-Identification Using Extended Openface Method
2
作者 S.Michael Dinesh A.R.Kavitha 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期545-561,共17页
Deep learning has risen in popularity as a face recognition technology in recent years.Facenet,a deep convolutional neural network(DCNN)developed by Google,recognizes faces with 128 bytes per face.It also claims to ha... Deep learning has risen in popularity as a face recognition technology in recent years.Facenet,a deep convolutional neural network(DCNN)developed by Google,recognizes faces with 128 bytes per face.It also claims to have achieved 99.96%on the reputed Labelled Faces in the Wild(LFW)dataset.How-ever,the accuracy and validation rate of Facenet drops down eventually,there is a gradual decrease in the resolution of the images.This research paper aims at developing a new facial recognition system that can produce a higher accuracy rate and validation rate on low-resolution face images.The proposed system Extended Openface performs facial recognition by using three different features i)facial landmark ii)head pose iii)eye gaze.It extracts facial landmark detection using Scattered Gated Expert Network Constrained Local Model(SGEN-CLM).It also detects the head pose and eye gaze using Enhanced Constrained Local Neur-alfield(ECLNF).Extended openface employs a simple Support Vector Machine(SVM)for training and testing the face images.The system’s performance is assessed on low-resolution datasets like LFW,Indian Movie Face Database(IMFDB).The results demonstrated that Extended Openface has a better accuracy rate(12%)and validation rate(22%)than Facenet on low-resolution images. 展开更多
关键词 constrained local model enhanced constrained local neuralfield enhanced hog scattered gated expert network support vector machine
下载PDF
局部支持向量机的研究进展 被引量:9
3
作者 尹传环 牟少敏 +2 位作者 田盛丰 黄厚宽 朱莹莹 《计算机科学》 CSCD 北大核心 2012年第1期170-174,189,共6页
支持向量机是一种用途广泛的分类器,标准的支持向量机在预测每个样本点的类别时使用了训练集中所有的样本信息(即全局信息),然而这种全局化的方法并不蕴含一致性。局部支持向量机的提出符合"一致性蕴含局部性"的思路。首先回... 支持向量机是一种用途广泛的分类器,标准的支持向量机在预测每个样本点的类别时使用了训练集中所有的样本信息(即全局信息),然而这种全局化的方法并不蕴含一致性。局部支持向量机的提出符合"一致性蕴含局部性"的思路。首先回顾局部支持向量机的主要思想,然后阐述各种关于局部支持向量机的改进,并提出基于协同聚类的局部支持向量机用于大规模数据集,最后对局部支持向量机进行总结。 展开更多
关键词 支持向量机 局部支持向量机 协同聚类
下载PDF
基于时空图像分割和交互区域检测的人体动作识别方法 被引量:25
4
作者 张杰 吴剑章 +1 位作者 汤嘉立 范洪辉 《计算机应用研究》 CSCD 北大核心 2017年第1期302-305,320,共5页
针对现有人体动作识别方法没有考虑到非人体目标的作用,提出一种基于时空图像分割和目标交互区域检测的人体动作识别方法。在视频流中检测出人体轮廓,并将其进行时空图像分段形成关键段区域;然后,扩展分段使其包含与人体交互的非人体目... 针对现有人体动作识别方法没有考虑到非人体目标的作用,提出一种基于时空图像分割和目标交互区域检测的人体动作识别方法。在视频流中检测出人体轮廓,并将其进行时空图像分段形成关键段区域;然后,扩展分段使其包含与人体交互的非人体目标,通过时空梯度方向直方图(HOG)和光流场方向直方图(HOF)描述符来表示关键段的静态和动态特征,并通过K-均值算法构建成码书,同时采用局部约束线性编码(LLC)技术来优化码书;最后采用非线性支持向量机(SVM)对特征进行学习并进行动作识别。实验结果表明,与现有基于兴趣点的方法相比,该方案获得了较高的动作识别率。 展开更多
关键词 人体动作识别 时空图像分割 交互区域 局部约束线性编码 支持向量机
下载PDF
基于支持向量机的自适应图像水印技术 被引量:17
5
作者 李春花 凌贺飞 卢正鼎 《计算机研究与发展》 EI CSCD 北大核心 2007年第8期1399-1405,共7页
提出一种基于支持向量机的自适应图像空域水印嵌入算法.由于支持向量机与人眼视觉系统在自学习、泛化和非线性逼近等方面具有极大的相似性,算法利用支持向量机模拟人眼视觉特征,结合图像的局部相关特性,自适应地确定图像的最佳嵌入位置... 提出一种基于支持向量机的自适应图像空域水印嵌入算法.由于支持向量机与人眼视觉系统在自学习、泛化和非线性逼近等方面具有极大的相似性,算法利用支持向量机模拟人眼视觉特征,结合图像的局部相关特性,自适应地确定图像的最佳嵌入位置和嵌入强度.首先,利用无导师的模糊聚类分析方法对图像各像素进行初步的聚类,为有导师的支持向量机找到分类规则;然后,从各类别中选出隶属度超过一定阈值的像素作为支持向量机分类的训练样本集,建立支持向量机的分类模型,根据此模型对图像各像素再次分类,从而确定水印的最佳嵌入位置;最后结合图像自身的局部相关性,自适应地调整水印嵌入位置的像素值.该算法在提取水印时不需要原始载体图像.实验结果表明,此算法对多种图像处理均具有很好的稳健性和图像感知质量,其性能优于相关文献上的相近方法. 展开更多
关键词 数字水印 支持向量机 支持向量分类 模糊聚类 人眼视觉系统 图像局部相关性
下载PDF
融合独立分量分析与支持向量聚类的人脸表情识别方法 被引量:3
6
作者 周书仁 梁昔明 《计算机应用》 CSCD 北大核心 2011年第6期1605-1608,共4页
针对人脸表情特征提取及自动聚类问题,提出了融合独立分量分析(ICA)与支持向量聚类(SVC)的人脸表情识别方法。采用ICA方法进行人脸表情的特征提取,然后采用混合因子分析(MFA)的交互参数调整方法得到局部约束支持向量聚类(LCSVC)的半径,... 针对人脸表情特征提取及自动聚类问题,提出了融合独立分量分析(ICA)与支持向量聚类(SVC)的人脸表情识别方法。采用ICA方法进行人脸表情的特征提取,然后采用混合因子分析(MFA)的交互参数调整方法得到局部约束支持向量聚类(LCSVC)的半径,有效降低了表情类别聚类边缘的部分干扰,这比单独采用支持向量聚类(SVC)方法效果要好。测试样本时通过比较新旧半径的值进行判决,实验结果表明该方法是有效的。 展开更多
关键词 表情识别 独立分量分析 局部约束支持向量聚类 混合因子分析
下载PDF
K-means聚类与SVDD结合的新的分类算法 被引量:7
7
作者 刘艳红 薛安荣 史习云 《计算机应用研究》 CSCD 北大核心 2010年第3期883-886,共4页
为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部... 为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部支持向量集训练,即得到最终的全局决策边界。由于采用了分而治之并行计算的方法,提高了算法的效率。对合成数据(200个)和实际数据的实验结果表明,所提算法较SVDD算法,训练时间降低为原来的10%,分类错误率较原来的降低了近一半。因此,所提算法提高了分类精度和算法效率。 展开更多
关键词 单值分类 支持向量数据描述 K—means聚类 局部疏密度
下载PDF
基于谱聚类和增量学习的运动目标物体检测算法研究 被引量:2
8
作者 黄伟 杨文姬 +2 位作者 曾璟 曾舒如 陈光 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第1期170-176,共7页
运动目标物体检测是计算机视觉领域的热门研究方向之一。该方向的一些复杂问题,例如:环境光照变化、目标物体部分/全遮挡、目标物体刚性/非刚性形变等,仍极具挑战性,并制约检测算法效果的进一步提高。为此,提出了一种新颖的运动目标物... 运动目标物体检测是计算机视觉领域的热门研究方向之一。该方向的一些复杂问题,例如:环境光照变化、目标物体部分/全遮挡、目标物体刚性/非刚性形变等,仍极具挑战性,并制约检测算法效果的进一步提高。为此,提出了一种新颖的运动目标物体检测算法。该算法采用了增量学习技术,融合了视频相邻帧在空间和时间上的高相关性,在每个测试帧上都利用其相邻帧的训练数据进行模型的自学习与更新,从而保证了模型在不同环境或复杂背景下能自动调整。为了实现模型学习,还提出并采用了一种新颖的谱聚类技术。该算法通过一个由1 000多帧的视频数据库验证,采用统计学中的方差分析和多重对比等实验手段,综合分析了该算法与其他同类经典算法的效果。通过大量统计分析,结果表明,该新颖检测算法比传统算法在运动目标物体检测的准确性和鲁棒性上都有明显提高。 展开更多
关键词 算法 谱聚类 增量学习 运动目标物体 检测
下载PDF
流形学习算法在中文问题分类中的应用研究 被引量:1
9
作者 张巍 张绚 陈俊杰 《计算机应用与软件》 CSCD 北大核心 2014年第8期269-272,287,共5页
针对中文问题分类方法中特征向量维数过高导致处理速度过慢的问题,提出一种基于局部鉴别索引和支持向量聚类的中文问题分类方法。首先利用局部鉴别索引算法对原始高维问句数据集进行降维,将其映射到一个低维空间中,然后通过支持向量聚... 针对中文问题分类方法中特征向量维数过高导致处理速度过慢的问题,提出一种基于局部鉴别索引和支持向量聚类的中文问题分类方法。首先利用局部鉴别索引算法对原始高维问句数据集进行降维,将其映射到一个低维空间中,然后通过支持向量聚类算法对问句进行分类。在哈工大社会计算与信息检索研究中心的中文问题集上进行实验,实验结果证明了该方法的有效性,大类准确率87.6%,小类准确率72.5%,取得了较好的效果。 展开更多
关键词 问题分类 局部鉴别索引 支持向量聚类 流形学习
下载PDF
基于模糊聚类的LLE和SVM的人脸识别 被引量:5
10
作者 高晴 闫德勤 +1 位作者 楚永贺 徐丽丽 《微型机与应用》 2015年第6期56-58,共3页
针对传统的局部线性嵌入算法易受近邻点个数的影响,以及支持向量机的错分点过多对识别率产生的影响,提出了一种基于模糊聚类的局部线性嵌入和支持向量机的人脸识别方法。利用改进的算法对人脸库中的图像进行特征提取,然后采用支持向量... 针对传统的局部线性嵌入算法易受近邻点个数的影响,以及支持向量机的错分点过多对识别率产生的影响,提出了一种基于模糊聚类的局部线性嵌入和支持向量机的人脸识别方法。利用改进的算法对人脸库中的图像进行特征提取,然后采用支持向量机分类器对人脸进行训练和识别。实验表明,该方法提高了人脸的识别率。 展开更多
关键词 人脸识别 局部线性嵌入 模糊聚类 支持向量机
下载PDF
基于LLC与加权SPM的车辆品牌型号识别 被引量:2
11
作者 李熙莹 袁敏贤 +1 位作者 吕硕 江倩殷 《计算机工程》 CAS CSCD 北大核心 2017年第5期210-216,共7页
针对传统车辆识别算法鲁棒性及实时性不强的问题,结合局部线性约束编码(LLC)和加权空间金字塔匹配(SPM)模型,提出一种车辆品牌型号精细识别算法。提取图像方向梯度直方图特征,通过LLC对图像特征进行编码映射,得到具有语义信息的图像表... 针对传统车辆识别算法鲁棒性及实时性不强的问题,结合局部线性约束编码(LLC)和加权空间金字塔匹配(SPM)模型,提出一种车辆品牌型号精细识别算法。提取图像方向梯度直方图特征,通过LLC对图像特征进行编码映射,得到具有语义信息的图像表达向量,以提高识别的准确率。利用加权SPM模型将空间位置信息引入图像表达向量中,并将每个图像的最终表达送入线性支持向量机分类器进行训练与识别。使用交通监控摄像头在不同天气和光照条件下采集150种车辆类型共56 827张图像进行实验,结果表明,该算法可有效改善识别效果,提高识别速度。 展开更多
关键词 车辆品牌型号识别 方向梯度直方图 局部约束线性编码 加权空间金字塔匹配 支持向量机
下载PDF
基于局部抑制线性编码的图像快速识别方法 被引量:1
12
作者 陈光喜 龚震霆 +1 位作者 温佩芝 任夏荔 《计算机科学》 CSCD 北大核心 2016年第5期308-312,F0003,共6页
传统的图像识别方法如ScSPM、LLC都是在SIFT的基础上提取特征,忽略了人工特征的局限性,且单张图像识别耗时略长。考虑到这些不足,提出了一种基于局部抑制线性编码的图像快速识别方法。该方法首先直接利用局部抑制线性编码提取图像局部... 传统的图像识别方法如ScSPM、LLC都是在SIFT的基础上提取特征,忽略了人工特征的局限性,且单张图像识别耗时略长。考虑到这些不足,提出了一种基于局部抑制线性编码的图像快速识别方法。该方法首先直接利用局部抑制线性编码提取图像局部特征描述子;然后用线性空间金字塔匹配(LSPM)对特征描述子进行计算;最后将计算结果输入到线性支持向量机(LSVM)中进行训练和测试。在3个常用的图像数据集上的实验结果表明,该方法在类别不多的情况下具有很好的识别准确率,同时大大减少了单张图像识别耗时,从而验证了该方法在图像识别上的有效性。 展开更多
关键词 局部抑制线性编码 线性空间金字塔匹配 线性支持向量机 单张图像识别耗时
下载PDF
二型模糊理论在乙烯裂解炉过程监控中的应用
13
作者 高勇 王振雷 +1 位作者 钱锋 朱彦兴 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期302-308,370,共8页
利用区间二型模糊C-均值聚类的方法,将过程数据进行聚类,并且聚类过程采用自适应的方法选择聚类数,由此区别不同的工况;利用局部切空间排列算法(LTSA)分别对聚类之后的每一类数据进行降维处理,然后利用每一类降维后的数据,使用支持向量... 利用区间二型模糊C-均值聚类的方法,将过程数据进行聚类,并且聚类过程采用自适应的方法选择聚类数,由此区别不同的工况;利用局部切空间排列算法(LTSA)分别对聚类之后的每一类数据进行降维处理,然后利用每一类降维后的数据,使用支持向量数据描述(SVDD)的方法构建多个模型,并建立相应的统计量与统计限,完成离线建模过程。在线监控过程中首先判断过程数据属于哪一种工况,然后利用相应的模型来计算统计量并判断是否故障,利用乙烯裂解炉的过程数据进行了仿真研究,验证了方法的可行性。 展开更多
关键词 区间二型模糊C均值聚类 自适应 局部切空间排列算法 支持向量数据描述
下载PDF
基于COG-OS框架利用SMART预测云计算平台的硬盘故障 被引量:3
14
作者 宋云华 柏文阳 周琦 《计算机应用》 CSCD 北大核心 2014年第1期31-35,188,共6页
针对云计算平台的硬盘不可靠问题,提出基于带过采样的COG(COG-OS)框架,利用硬盘自我监测分析和报告技术(SMART)日志预测故障硬盘。首先采用DBScan或K-means聚类算法将无故障硬盘样本划分成多个不相交子集;再与故障硬盘样本结合,采用少... 针对云计算平台的硬盘不可靠问题,提出基于带过采样的COG(COG-OS)框架,利用硬盘自我监测分析和报告技术(SMART)日志预测故障硬盘。首先采用DBScan或K-means聚类算法将无故障硬盘样本划分成多个不相交子集;再与故障硬盘样本结合,采用少量样本合成过采样技术(SMOTE)使整体样本集趋于平衡;最后采用LIBSVM分类算法预测故障硬盘。调整参数,将COG-OS与SMOTE+支持向量机(SVM)的预测性能相比较,实验结果表明该方法具有可行性。当采用K-means方法划分无故障盘样本,并采用径向基函数(RBF)内核的LIBSVM方法预测故障盘时,COG-OS改善了SMOTE+SVM对故障硬盘的预测查全率和整体性能。 展开更多
关键词 COG-OS框架 自我监测分析和报告技术 K-均值 少量样本合成过采样技术 LIBSVM 支持向量机
下载PDF
一种融合流形学习的视频人脸性别识别改进算法 被引量:1
15
作者 张丹 《电讯技术》 北大核心 2012年第6期1031-1034,共4页
如何有效利用视频中人脸之间的时空连续性信息来克服人脸分辨率低、图像尺度变化大和姿态、光照变化以及遮挡等问题是视频人脸识别的关键所在。提出了一种基于流形学习的视频人脸性别识别算法。该算法不仅可以通过聚类融合学习来挖掘视... 如何有效利用视频中人脸之间的时空连续性信息来克服人脸分辨率低、图像尺度变化大和姿态、光照变化以及遮挡等问题是视频人脸识别的关键所在。提出了一种基于流形学习的视频人脸性别识别算法。该算法不仅可以通过聚类融合学习来挖掘视频内在的连续性信息,同时能发现人脸数据中内在非线性结构信息而获得低维本质的流形结构。在UCSD/Honda和自采集数据库上与静态的算法比较结果表明,所提算法能够获得更好的识别率。 展开更多
关键词 视频人脸性别识别 流形学习 聚类融合 保局投影 支持向量机
下载PDF
基于加权优化的自然场景分类方法研究
16
作者 张亚杰 马秀梅 张轩雄 《计算机应用研究》 CSCD 北大核心 2016年第5期1591-1595,共5页
为了提高了静态图像中自然场景分类的识别精度,采用一种基于加权优化的聚类方法。将文本领域的文字激活力矩阵方法应用到图像分类领域,将视觉词汇的数目减少使得运行时间减少,并降低了对存储内存的占用。在特征编码阶段采用局部约束线... 为了提高了静态图像中自然场景分类的识别精度,采用一种基于加权优化的聚类方法。将文本领域的文字激活力矩阵方法应用到图像分类领域,将视觉词汇的数目减少使得运行时间减少,并降低了对存储内存的占用。在特征编码阶段采用局部约束线性编码算法,并将其应用在空间金字塔模型的向量量化中,该算法能有效降低量化误差改善分类效果。实验结果表明,提出的基于加权优化的局部约束线性编码算法能够获得更好的分类效果。 展开更多
关键词 自然场景分类 加权优化 文字激活力矩阵 局部约束线性编码 支持向量机
下载PDF
一种基于聚类的快速局部支持向量机算法 被引量:1
17
作者 浩庆波 牟少敏 +2 位作者 尹传环 昌腾腾 崔文斌 《山东大学学报(工学版)》 CAS 北大核心 2015年第1期13-18,共6页
为进一步改善局部支持向量机的分类效率和分类精度,提出一种改进的局部支持向量机算法。该算法对每类训练样本分别进行聚类,使用聚类生成的样本中心点集代替样本,使用改进的k最近邻算法选取测试样本的k个近邻。分别在UCI数据集和自建树... 为进一步改善局部支持向量机的分类效率和分类精度,提出一种改进的局部支持向量机算法。该算法对每类训练样本分别进行聚类,使用聚类生成的样本中心点集代替样本,使用改进的k最近邻算法选取测试样本的k个近邻。分别在UCI数据集和自建树皮图像数据集上对本研究算法的有效性进行测试。实验结果表明,本研究提出的算法在分类精度和效率上具有一定的优势。 展开更多
关键词 局部支持向量机 k最近邻 K均值聚类 核函数 分类 纹理特征
原文传递
A novel multimode process monitoring method integrating LDRSKM with Bayesian inference
18
作者 Shi-jin REN Yin LIANG +1 位作者 Xiang-jun ZHAO Mao-yun YANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第8期617-633,共17页
A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and n... A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process. 展开更多
关键词 Multimode process monitoring local discriminant regularized soft k-means clustering Kernel support vector datadescription Bayesian inference Tennessee Eastman process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部