A group G is said to have property μ whenever N is a non-locally nitpotent normal subgroup of G, there is a finite non-nilpotent G-quotient of N. FC-groups and groups with property v satisfy property μ, where a grou...A group G is said to have property μ whenever N is a non-locally nitpotent normal subgroup of G, there is a finite non-nilpotent G-quotient of N. FC-groups and groups with property v satisfy property μ, where a group G is said to have property v if every non-nilpotent normal subgroup of G has a finite non-nilpotent G-quotient. HP(G) is the Hirsch-Plotkin radical of G, and φf (G) is the intersection of all the maximal subgroups of finite index in G (here φf(G) = G if no such maximal subgroups exist). It is shown that a group G has property μ if and only if HP(G/φf(G)) = HP(G)/φf(G) and that the class of groups with property v is a proper subclass of that of groups with property it. Also, the structure of the normal subgroups of a group: nilpotency with the minimal condition, is investigated.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 11371335, 11471055).
文摘A group G is said to have property μ whenever N is a non-locally nitpotent normal subgroup of G, there is a finite non-nilpotent G-quotient of N. FC-groups and groups with property v satisfy property μ, where a group G is said to have property v if every non-nilpotent normal subgroup of G has a finite non-nilpotent G-quotient. HP(G) is the Hirsch-Plotkin radical of G, and φf (G) is the intersection of all the maximal subgroups of finite index in G (here φf(G) = G if no such maximal subgroups exist). It is shown that a group G has property μ if and only if HP(G/φf(G)) = HP(G)/φf(G) and that the class of groups with property v is a proper subclass of that of groups with property it. Also, the structure of the normal subgroups of a group: nilpotency with the minimal condition, is investigated.