In this paper, we prove that the generalized Roper-Suffridge extension operator can be embeded in Loewner chains on the unit ball in Hibert spaces, and obtain the fact that the operator keeps the properties of almost ...In this paper, we prove that the generalized Roper-Suffridge extension operator can be embeded in Loewner chains on the unit ball in Hibert spaces, and obtain the fact that the operator keeps the properties of almost spirallike mapping of typeβ and order α, almost starlikeness of order α, spirallikeness of type ofβ and starlikeness.展开更多
This note is devoted to applying the principle of subordination in order to explore the Roper-Suffridge extension operator and the Pfaltzgraff-Suffridge extension operator with special analytic properties.First,we pro...This note is devoted to applying the principle of subordination in order to explore the Roper-Suffridge extension operator and the Pfaltzgraff-Suffridge extension operator with special analytic properties.First,we prove that both the Roper-Suffridge extension operator and the Pfaltzgraff-Suffridge extension operator preserve subordination.As applications,we obtain that if β∈[0,1],γ∈[0,1/r]and β+γ≤1,then the Roper-Suffridge extension operator Φ_(β+γ)(f)(z)=(f(z_(1)),(f(z_(1))/z_(1))^(β)(f’(z_(1)))^(γ)w),z∈Ω_(p,r) preserves an almost starlike mapping of complex order λ on Ω_(p,r)={z=(z_(1),w)∈C×X:|z_(1)|^(p)+‖w‖_(X)^(r)<1},where 1≤p≤2,r≥1 and X is a complex Banach space.Second,by applying the principle of subordination,we will prove that the Pfaltzgraff-Suffridge extension operator preserves an almost starlike mapping of complex order λ.Finally,we will obtain the lower bound of distortion theorems associated with the Roper-Suffridge extension operator.This subordination principle seems to be a new idea for dealing with the Loewner chain associated with the Roper-Suffridge extension operator,and enables us to generalize many known results from p=2 to 1≤p≤2.展开更多
In this paper we consider extreme points and support points for compact subclasses of normalized biholomorphic mappings of the Euclidean unit ball Bn in Cn. We consider the class So(Bn) of biholomorphic mappings on ...In this paper we consider extreme points and support points for compact subclasses of normalized biholomorphic mappings of the Euclidean unit ball Bn in Cn. We consider the class So(Bn) of biholomorphic mappings on Bn which have parametric representation, i.e., they are the initial elements f(-, O) of a Loewner chain f(x,t) = etz + ... such that {e-tf(.,t)}t≥o is a normal family on Bn. We show that if f(.,O) is an extreme point (respectively a support point) of So(Bn), then e-t f(., t) is an extreme point of So(Bn) for t≥0 (respectively a support point of So(Bn) for t C [O, t0] and some to〉 0). This is a generalization to the n-dimensional case of work due to Pell. Also, we prove analogous results for mappings which belong to So(Bn) and which are bounded in the norm by a fixed constant. We relate the study of this class to reachable sets in control theory generalizing work of Roth. Finally we consider extreme points and support points for biholomorphic mappings of Bn generated by using extension operators that preserve Loewner chains.展开更多
In this paper we give a survey about the Roper-Suffridge extension operator and the developments in the theory of univalent mappings in several variables to which it has led. We begin with the basic geometric properti...In this paper we give a survey about the Roper-Suffridge extension operator and the developments in the theory of univalent mappings in several variables to which it has led. We begin with the basic geometric properties (most of which now have a number of different proofs)and discuss relations with the theory of Loewner chains and generalizations and modifications of the operator, some of which are very recent.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(10626015 10571044) Supported by the Fundamental Research of National Natural Science Foundation of Henan University(04ZDZR004)
文摘In this paper, we prove that the generalized Roper-Suffridge extension operator can be embeded in Loewner chains on the unit ball in Hibert spaces, and obtain the fact that the operator keeps the properties of almost spirallike mapping of typeβ and order α, almost starlikeness of order α, spirallikeness of type ofβ and starlikeness.
基金partially supported by the NationalNatural Science Foundation of China(12071161,11971165,11701307)the Natural Science Foundation of Fujian Province(2020J01073)。
文摘This note is devoted to applying the principle of subordination in order to explore the Roper-Suffridge extension operator and the Pfaltzgraff-Suffridge extension operator with special analytic properties.First,we prove that both the Roper-Suffridge extension operator and the Pfaltzgraff-Suffridge extension operator preserve subordination.As applications,we obtain that if β∈[0,1],γ∈[0,1/r]and β+γ≤1,then the Roper-Suffridge extension operator Φ_(β+γ)(f)(z)=(f(z_(1)),(f(z_(1))/z_(1))^(β)(f’(z_(1)))^(γ)w),z∈Ω_(p,r) preserves an almost starlike mapping of complex order λ on Ω_(p,r)={z=(z_(1),w)∈C×X:|z_(1)|^(p)+‖w‖_(X)^(r)<1},where 1≤p≤2,r≥1 and X is a complex Banach space.Second,by applying the principle of subordination,we will prove that the Pfaltzgraff-Suffridge extension operator preserves an almost starlike mapping of complex order λ.Finally,we will obtain the lower bound of distortion theorems associated with the Roper-Suffridge extension operator.This subordination principle seems to be a new idea for dealing with the Loewner chain associated with the Roper-Suffridge extension operator,and enables us to generalize many known results from p=2 to 1≤p≤2.
基金supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. A9221)Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science, 2011 (Grant No. 22540213)the Romanian Ministry of Education and Research, UEFISCSU-CNCSIS(Grants Nos. PN-II-ID 524/2007, 525/2007)
文摘In this paper we consider extreme points and support points for compact subclasses of normalized biholomorphic mappings of the Euclidean unit ball Bn in Cn. We consider the class So(Bn) of biholomorphic mappings on Bn which have parametric representation, i.e., they are the initial elements f(-, O) of a Loewner chain f(x,t) = etz + ... such that {e-tf(.,t)}t≥o is a normal family on Bn. We show that if f(.,O) is an extreme point (respectively a support point) of So(Bn), then e-t f(., t) is an extreme point of So(Bn) for t≥0 (respectively a support point of So(Bn) for t C [O, t0] and some to〉 0). This is a generalization to the n-dimensional case of work due to Pell. Also, we prove analogous results for mappings which belong to So(Bn) and which are bounded in the norm by a fixed constant. We relate the study of this class to reachable sets in control theory generalizing work of Roth. Finally we consider extreme points and support points for biholomorphic mappings of Bn generated by using extension operators that preserve Loewner chains.
文摘In this paper we give a survey about the Roper-Suffridge extension operator and the developments in the theory of univalent mappings in several variables to which it has led. We begin with the basic geometric properties (most of which now have a number of different proofs)and discuss relations with the theory of Loewner chains and generalizations and modifications of the operator, some of which are very recent.