By applying the theory of quasiconformal maps in measure metric spaces that was introduced by Heinonen-Koskela, we characterize bi-Lipschitz maps by modulus inequalities of rings and maximal, minimal derivatives in Q-...By applying the theory of quasiconformal maps in measure metric spaces that was introduced by Heinonen-Koskela, we characterize bi-Lipschitz maps by modulus inequalities of rings and maximal, minimal derivatives in Q-regular Loewner spaces. Meanwhile the sufficient and necessary conditions for quasiconformal maps to become bi-Lipschitz maps are also obtained. These results generalize Rohde’s theorem in ? n and improve Balogh’s corresponding results in Carnot groups.展开更多
文摘By applying the theory of quasiconformal maps in measure metric spaces that was introduced by Heinonen-Koskela, we characterize bi-Lipschitz maps by modulus inequalities of rings and maximal, minimal derivatives in Q-regular Loewner spaces. Meanwhile the sufficient and necessary conditions for quasiconformal maps to become bi-Lipschitz maps are also obtained. These results generalize Rohde’s theorem in ? n and improve Balogh’s corresponding results in Carnot groups.