In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests a...In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests and been employed for many wideband applications. A Printed Log-Periodic Dipole Antenna (PLPDA) with multiple notched bands is proposed for Ultra-WideBand (UWB) applications. An antenna with the notched frequencies of 1.03 GHz, 1.28 GHz, 1.72 GHz, 2.24 GHz and 2.51 GHz is designed, fabricated, and measured. An antenna model was established on the substrate of FR4 and feed by a stripline. The simulation results show that the antenna can achieve an impendence wide bandwidth from 0.89 to 2.58 GHz with return loss less than -10 dB and exhibit stable antenna gain. Furthermore, the measurement result is better consistent with simulation result.展开更多
A rectangle capacity patch was adopted as the resonance unit of the Log Periodic Dipole Antenna (LPDA) so as to realize the miniaturization of this aerial in this paper. Fifteen rectangle capacity patch units of diffe...A rectangle capacity patch was adopted as the resonance unit of the Log Periodic Dipole Antenna (LPDA) so as to realize the miniaturization of this aerial in this paper. Fifteen rectangle capacity patch units of different parameters were analyzed in this paper and three design laws of size-reduction were found. Accord-ing to these design laws, a 70% miniaturization ratio LPDA was designed and fabricated. The Voltage Standing Wave Ratio (VSWR) and pattern of the fabricated LPDA were measured. The results indicate that this size-reduction method do not deteriorate performance.展开更多
This paper presents the family of logarithmically periodic toothed planer antennas. In this the dimensions of the succes-sive sections were increased in geometric progression for a wide bandwidth usage. A band width o...This paper presents the family of logarithmically periodic toothed planer antennas. In this the dimensions of the succes-sive sections were increased in geometric progression for a wide bandwidth usage. A band width of 7% for trapezoid toothed, 26% for zigzag toothed and 50% for cross-toothed VSWR < 2 has been obtained from the proposed antennas. Investigations on the gain and radiation characteristics have been carried out. The investigations show that the pro-posed designs not only offers the enhanced bandwidth but also possesses the same characteristics over the desired fre-quency band at same probe feed position.展开更多
This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to i...This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to improve the antenna impedance matching. The proposed antenna dimensions are 50 × 50 mm2 with FR4 substrate thickness 0.8 mm. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The pulse distortion is verified by the measured the proposed antenna performance with virtually steady group delay. The simulation and experimental results show that the proposed antenna exhibits good impedance matching, stable radiation patterns throughout the whole operating frequency bands, acceptable gain and stable group delay over the entire operating band. An UWB extended from 1.85 GHz to 11 GHz is obtained, and the average antenna gain is about 5.5 dBi over the operating band with peak gain around 6.5 dBi and 70% average radiation efficiency.展开更多
The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda arra...The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.展开更多
The Controlled Source Electromagnetic Method (CSEM) is used for offshore hydrocarbon exploration. Hydrocarbon detection in seabed logging (SBL) is a very challenging task for deep hydrocarbon reservoirs. The electroma...The Controlled Source Electromagnetic Method (CSEM) is used for offshore hydrocarbon exploration. Hydrocarbon detection in seabed logging (SBL) is a very challenging task for deep hydrocarbon reservoirs. The electromagnetic field response of an antenna is unable to detect deep hydrocarbon reservoirs due to a weak electromagnetic signal response in the seabed logging environment. This work premise deals with the comparison of the electromagnetic signal strength of a new antenna with a straight antenna and the orientation of an antenna for deep target hydrocarbon exploration. Antenna position and orientation (Tx and Ty) was studied using Computer Simulation Technology software (CST) for deep targets in marine CSEM environments. The model area was assigned as (40 ′ 40 km) to replicate the real seabed environment. From the results, the new dipole antenna shows an 804% and 278% increase in electric and magnetic field strength than the straight antenna. An electric (E) and magnetic (H) field component study was done with and without the presence of a hydrocarbon reservoir. Ex and Hz field component responses with the new antenna at the1 kmtarget were measured in a deep water environment. It was analyzed that the antenna shows 53.10% (Ex) and 83.13% (Hz) field difference in deep water with and without a hydrocarbon reservoir at the30 mantenna position from the sea floor. From the antenna orientation results, it was observed that, the electric field Ex and magnetic field Hz responses decreased from 18% to 12% and 21% to 16%, respectively but was still able to detect the deep target hydrocarbon reservoir at the4 kmtarget depth. This EM antenna may open new frontiers for the oil and gas industry for deep target hydrocarbon detection (HC).展开更多
文摘In theory, Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns. Owing to these characteristics, LPA has gained research interests and been employed for many wideband applications. A Printed Log-Periodic Dipole Antenna (PLPDA) with multiple notched bands is proposed for Ultra-WideBand (UWB) applications. An antenna with the notched frequencies of 1.03 GHz, 1.28 GHz, 1.72 GHz, 2.24 GHz and 2.51 GHz is designed, fabricated, and measured. An antenna model was established on the substrate of FR4 and feed by a stripline. The simulation results show that the antenna can achieve an impendence wide bandwidth from 0.89 to 2.58 GHz with return loss less than -10 dB and exhibit stable antenna gain. Furthermore, the measurement result is better consistent with simulation result.
文摘A rectangle capacity patch was adopted as the resonance unit of the Log Periodic Dipole Antenna (LPDA) so as to realize the miniaturization of this aerial in this paper. Fifteen rectangle capacity patch units of different parameters were analyzed in this paper and three design laws of size-reduction were found. Accord-ing to these design laws, a 70% miniaturization ratio LPDA was designed and fabricated. The Voltage Standing Wave Ratio (VSWR) and pattern of the fabricated LPDA were measured. The results indicate that this size-reduction method do not deteriorate performance.
文摘This paper presents the family of logarithmically periodic toothed planer antennas. In this the dimensions of the succes-sive sections were increased in geometric progression for a wide bandwidth usage. A band width of 7% for trapezoid toothed, 26% for zigzag toothed and 50% for cross-toothed VSWR < 2 has been obtained from the proposed antennas. Investigations on the gain and radiation characteristics have been carried out. The investigations show that the pro-posed designs not only offers the enhanced bandwidth but also possesses the same characteristics over the desired fre-quency band at same probe feed position.
文摘This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to improve the antenna impedance matching. The proposed antenna dimensions are 50 × 50 mm2 with FR4 substrate thickness 0.8 mm. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The pulse distortion is verified by the measured the proposed antenna performance with virtually steady group delay. The simulation and experimental results show that the proposed antenna exhibits good impedance matching, stable radiation patterns throughout the whole operating frequency bands, acceptable gain and stable group delay over the entire operating band. An UWB extended from 1.85 GHz to 11 GHz is obtained, and the average antenna gain is about 5.5 dBi over the operating band with peak gain around 6.5 dBi and 70% average radiation efficiency.
文摘The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.
文摘The Controlled Source Electromagnetic Method (CSEM) is used for offshore hydrocarbon exploration. Hydrocarbon detection in seabed logging (SBL) is a very challenging task for deep hydrocarbon reservoirs. The electromagnetic field response of an antenna is unable to detect deep hydrocarbon reservoirs due to a weak electromagnetic signal response in the seabed logging environment. This work premise deals with the comparison of the electromagnetic signal strength of a new antenna with a straight antenna and the orientation of an antenna for deep target hydrocarbon exploration. Antenna position and orientation (Tx and Ty) was studied using Computer Simulation Technology software (CST) for deep targets in marine CSEM environments. The model area was assigned as (40 ′ 40 km) to replicate the real seabed environment. From the results, the new dipole antenna shows an 804% and 278% increase in electric and magnetic field strength than the straight antenna. An electric (E) and magnetic (H) field component study was done with and without the presence of a hydrocarbon reservoir. Ex and Hz field component responses with the new antenna at the1 kmtarget were measured in a deep water environment. It was analyzed that the antenna shows 53.10% (Ex) and 83.13% (Hz) field difference in deep water with and without a hydrocarbon reservoir at the30 mantenna position from the sea floor. From the antenna orientation results, it was observed that, the electric field Ex and magnetic field Hz responses decreased from 18% to 12% and 21% to 16%, respectively but was still able to detect the deep target hydrocarbon reservoir at the4 kmtarget depth. This EM antenna may open new frontiers for the oil and gas industry for deep target hydrocarbon detection (HC).