This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control l...This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control logic based on an on-chip delay-locked loop(DLL).The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter(CDAC)than the synchronous and asynchronous SAR ADC.Therefore,the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent.In addition,the fore-ground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter(FIR-BPF)based least-mean-square(LMS)algorithm in an off-chip FPGA(field programmable gate array).Fabricated in 40-nm CMOS process,the proto-type ADC achieves 94.02-dB spurious-free dynamic range(SFDR),and 75.98-dB signal-to-noise-and-distortion ratio(SNDR)for a 2.88-MHz input under 18-MSPS sampling rate.展开更多
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo...Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.展开更多
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi...In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.展开更多
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ...The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery l...<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span>展开更多
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c...The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.展开更多
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis...A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.展开更多
Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing in...Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).展开更多
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste...Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.展开更多
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati...On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.展开更多
The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. ...The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future.展开更多
Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuat...Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuators in the field.However,PLC has memory attack threats such as program injection and manipulation,which has long been a major target for attackers,and it is important to detect these attacks for ICS security.To detect PLC memory attacks,a security system is required to acquire and monitor PLC memory directly.In addition,the performance impact of the security system on the PLC makes it difficult to apply to the ICS.To address these challenges,this paper proposes a system to detect PLC memory attacks by continuously acquiring and monitoring PLC memory.The proposed system detects PLC memory attacks by acquiring the program blocks and block information directly from the same layer as the PLC and then comparing them in bytes with previous data.Experiments with Siemens S7-300 and S7-400 PLC were conducted to evaluate the PLC memory detection performance and performance impact on PLC.The experimental results demonstrate that the proposed system detects all malicious organization block(OB)injection and data block(DB)manipulation,and the increment of PLC cycle time,the impact on PLC performance,was less than 1 ms.The proposed system detects PLC memory attacks with a simpler detection method than earlier studies.Furthermore,the proposed system can be applied to ICS with a small performance impact on PLC.展开更多
Drying is one of the most energy-intensive processes in agro-products industry. For this reason, using solar energy appears as an attractive not polluting alternative to be used in drying processes. However, the daily...Drying is one of the most energy-intensive processes in agro-products industry. For this reason, using solar energy appears as an attractive not polluting alternative to be used in drying processes. However, the daily and seasonal fluctuations in the radiation level require using energy accumulators with phase change materials (paraffin wax), to have a continuous drying processes. In hybrid solar dryers with energy accumulation system, a control system is essential to coordinate the control valves that allow the income of air that comes from the solar panel or from the energy accumulator. In this work, we implemented an advances multivariable control system that uses fuzzy logic in the hybrid solar dryer. The dryer includes an energy accumulator panel with paraffin wax as phase change material. The input variables were ambient temperature and solar radiation, both not controllable. The controlled variables were the opening level of the solar panel and accumulator energy valves. The control program consisted in an algorithm implemented with the “Fuzzy” toolbox in Matlab. Data were acquired with OPTO 22. The control system performed adequately when used to dehydrate mushroom slices and plums. Closing or opening the respective valves as a response to the variations of solar radiation and ambient air temperature allowed optimizing the use of solar energy.展开更多
An application of fuzzy logic in brushess servo system is presented. FLC(fuzzy logic control)provides a control strategy regarding to uncertain model, so it has certain robustness. The proposed method improves the rob...An application of fuzzy logic in brushess servo system is presented. FLC(fuzzy logic control)provides a control strategy regarding to uncertain model, so it has certain robustness. The proposed method improves the robust performance of the system, so as to suppress rapidly the state error caused by both parameter variation and forced disturbance. In order to optimize the characteristic of the FLC, PID and on-line adaptive controls are applied. Experiments show that the proposed method is effective.展开更多
Smart grid design and structures are somehow depending on the way of designing and operating Microgrids. In this research a unique design of microgrid is proposed as in medium tension isolated power distribution syste...Smart grid design and structures are somehow depending on the way of designing and operating Microgrids. In this research a unique design of microgrid is proposed as in medium tension isolated power distribution system contains diesel generation unit and photovoltaic generation. Storage system is a part of the control strategy to reduce the diesel usage and to maintain the balance between generation and demand which might be disturbed due to the presence of PV system. Fuzzy logic control scheme has been chosen compared with conventional controller to be the main controller for both the diesel unit and storage system. Promising result has been found by digital simulation using Matlab Simulink proving the possibility of reducing the dependency on fossil fueled generators and increase the utilization of renewable energy.展开更多
The main equipmets of the HL-2A LHCD power supply are based on the old one, but the logical control protective system is a new part. Considering the output voltage is very high(up to 60 kV), so the logical control p...The main equipmets of the HL-2A LHCD power supply are based on the old one, but the logical control protective system is a new part. Considering the output voltage is very high(up to 60 kV), so the logical control protective system is very important. The system is implemented based on PLC and the SIEMENS STEP7 software.展开更多
Removal efficiency of COD, NH4-N and PO4-P and NO3-N in five step SBR processes is widely influenced by hydraulic retention time of Anaerobic/Anoxic/Aerobic/Anoxic/Aerobic step of this system where the hydraulic reten...Removal efficiency of COD, NH4-N and PO4-P and NO3-N in five step SBR processes is widely influenced by hydraulic retention time of Anaerobic/Anoxic/Aerobic/Anoxic/Aerobic step of this system where the hydraulic retention time in each step is influence directly on removal efficiency of this system therefore the operator of this system cannot control on this system without experience or a control model. The major objective of this paper is develop a control model (Fuzzy Logic Control Model) based on fuzzy logic rule to predict the maximum removal efficiency of COD,NH4-N,PO4-P and NO3-N and minimize hydraulic retention time in each step of SBR process where the controlled variables was the hydraulic retention times in the Anaerobic/Anoxic/Aerobic/Anoxic/Aerobic step respectively and the output variables was the COD, NH4-N, PO4-P and NO3-N removal efficiency at constant ratio of C/N/P and sludge age. As a results Fuzzy logic if-then rules were used and MIMO Model was built to control COD, NH4-Nand PO4-P and NO3-N removal efficiency based on hydraulic retention time in each tank of five step SBR process where the three dimension results show that the influence of hydraulic residence time at each step of SBR system on removal efficiency COD, NH4-N, PO4-P and NO3-N. Fuzzy control model provide a suitable tool for control and fast predict of Hydraulic residence time effects on biological nutrient removal efficiency in five-step sequencing batch reactor.展开更多
基金supported by Qingdao Hi-image Technologies Co., Ltdin part by the NSFC of China under Grant 62174149, 61974118, 62004156the National Key R&D Program of China under Grant 2022YFC2404902
文摘This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control logic based on an on-chip delay-locked loop(DLL).The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter(CDAC)than the synchronous and asynchronous SAR ADC.Therefore,the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent.In addition,the fore-ground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter(FIR-BPF)based least-mean-square(LMS)algorithm in an off-chip FPGA(field programmable gate array).Fabricated in 40-nm CMOS process,the proto-type ADC achieves 94.02-dB spurious-free dynamic range(SFDR),and 75.98-dB signal-to-noise-and-distortion ratio(SNDR)for a 2.88-MHz input under 18-MSPS sampling rate.
文摘Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
基金funded by the National Natural Science Foundation of China:Research on the Energy Management Strategy of Li-Ion Battery and Sc Hybrid Energy Storage System for Electric Vehicle(51677058).
文摘In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.
文摘The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
基金National Natural Science Foundation of P. R. China (60574027)Opening Project of National Laboratory of Indus-trial Control Technology of Zhejiang University (0708001)
文摘<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span>
文摘The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.
文摘A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.
基金the European Union through the Network of Excellence Hybrid Control (HYCON) under contract IST-511368.
文摘Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).
基金supported by the National High Technology Research and Development Program of China under Grant No.2011AA05S113Major State Basic Research Development Program under Grant No.2012CB215106+1 种基金Science and Technology Plan Program in Zhejiang Province under Grant No.2009C34013National Science and Technology Supporting Plan Project under Grant No.2009BAG12A09
文摘Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.
基金Funded by the National Natural Science Foundation of China (NO.50135030)
文摘On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.
文摘The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future.
基金supported by the Korea WESTERN POWER(KOWEPO)(2022-Commissioned Research-11,Development of Cyberattack Detection Technology for New and Renewable Energy Control System Using AI(Artificial Intelligence),50%)the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-01806,Development of Security by Design and Security Management Technology in Smart Factory,40%)the Gachon University Research Fund of 2023(GCU-202110280001,10%).
文摘Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuators in the field.However,PLC has memory attack threats such as program injection and manipulation,which has long been a major target for attackers,and it is important to detect these attacks for ICS security.To detect PLC memory attacks,a security system is required to acquire and monitor PLC memory directly.In addition,the performance impact of the security system on the PLC makes it difficult to apply to the ICS.To address these challenges,this paper proposes a system to detect PLC memory attacks by continuously acquiring and monitoring PLC memory.The proposed system detects PLC memory attacks by acquiring the program blocks and block information directly from the same layer as the PLC and then comparing them in bytes with previous data.Experiments with Siemens S7-300 and S7-400 PLC were conducted to evaluate the PLC memory detection performance and performance impact on PLC.The experimental results demonstrate that the proposed system detects all malicious organization block(OB)injection and data block(DB)manipulation,and the increment of PLC cycle time,the impact on PLC performance,was less than 1 ms.The proposed system detects PLC memory attacks with a simpler detection method than earlier studies.Furthermore,the proposed system can be applied to ICS with a small performance impact on PLC.
文摘Drying is one of the most energy-intensive processes in agro-products industry. For this reason, using solar energy appears as an attractive not polluting alternative to be used in drying processes. However, the daily and seasonal fluctuations in the radiation level require using energy accumulators with phase change materials (paraffin wax), to have a continuous drying processes. In hybrid solar dryers with energy accumulation system, a control system is essential to coordinate the control valves that allow the income of air that comes from the solar panel or from the energy accumulator. In this work, we implemented an advances multivariable control system that uses fuzzy logic in the hybrid solar dryer. The dryer includes an energy accumulator panel with paraffin wax as phase change material. The input variables were ambient temperature and solar radiation, both not controllable. The controlled variables were the opening level of the solar panel and accumulator energy valves. The control program consisted in an algorithm implemented with the “Fuzzy” toolbox in Matlab. Data were acquired with OPTO 22. The control system performed adequately when used to dehydrate mushroom slices and plums. Closing or opening the respective valves as a response to the variations of solar radiation and ambient air temperature allowed optimizing the use of solar energy.
文摘An application of fuzzy logic in brushess servo system is presented. FLC(fuzzy logic control)provides a control strategy regarding to uncertain model, so it has certain robustness. The proposed method improves the robust performance of the system, so as to suppress rapidly the state error caused by both parameter variation and forced disturbance. In order to optimize the characteristic of the FLC, PID and on-line adaptive controls are applied. Experiments show that the proposed method is effective.
文摘Smart grid design and structures are somehow depending on the way of designing and operating Microgrids. In this research a unique design of microgrid is proposed as in medium tension isolated power distribution system contains diesel generation unit and photovoltaic generation. Storage system is a part of the control strategy to reduce the diesel usage and to maintain the balance between generation and demand which might be disturbed due to the presence of PV system. Fuzzy logic control scheme has been chosen compared with conventional controller to be the main controller for both the diesel unit and storage system. Promising result has been found by digital simulation using Matlab Simulink proving the possibility of reducing the dependency on fossil fueled generators and increase the utilization of renewable energy.
文摘The main equipmets of the HL-2A LHCD power supply are based on the old one, but the logical control protective system is a new part. Considering the output voltage is very high(up to 60 kV), so the logical control protective system is very important. The system is implemented based on PLC and the SIEMENS STEP7 software.
文摘Removal efficiency of COD, NH4-N and PO4-P and NO3-N in five step SBR processes is widely influenced by hydraulic retention time of Anaerobic/Anoxic/Aerobic/Anoxic/Aerobic step of this system where the hydraulic retention time in each step is influence directly on removal efficiency of this system therefore the operator of this system cannot control on this system without experience or a control model. The major objective of this paper is develop a control model (Fuzzy Logic Control Model) based on fuzzy logic rule to predict the maximum removal efficiency of COD,NH4-N,PO4-P and NO3-N and minimize hydraulic retention time in each step of SBR process where the controlled variables was the hydraulic retention times in the Anaerobic/Anoxic/Aerobic/Anoxic/Aerobic step respectively and the output variables was the COD, NH4-N, PO4-P and NO3-N removal efficiency at constant ratio of C/N/P and sludge age. As a results Fuzzy logic if-then rules were used and MIMO Model was built to control COD, NH4-Nand PO4-P and NO3-N removal efficiency based on hydraulic retention time in each tank of five step SBR process where the three dimension results show that the influence of hydraulic residence time at each step of SBR system on removal efficiency COD, NH4-N, PO4-P and NO3-N. Fuzzy control model provide a suitable tool for control and fast predict of Hydraulic residence time effects on biological nutrient removal efficiency in five-step sequencing batch reactor.