The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, ...The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.展开更多
In recent years, the research on pipeline laser-arc hybrid welding technology has been the important and difficult in the field of welding all over the world. China Petroleum Pipeline Research Institute Co. Ltd. has f...In recent years, the research on pipeline laser-arc hybrid welding technology has been the important and difficult in the field of welding all over the world. China Petroleum Pipeline Research Institute Co. Ltd. has firstly developed pipeline laser-arc hybrid welding system in China, and executed the welding tests based on X70/X80 steel. Preliminary experiment results showed that hybrid welding could meet the requirements of related standards such as API1104,ASME,etc., the mechanical properties of girth seam are qualified in the case that there were no internal defects. With the development of high-power fiber laser and the continuous improvement of welding equipment, laser-arc hybrid welding technology for pipeline field welding will be available soon.展开更多
Based on Bingham rheological model,a three-dimensional numerical simulation model for long-distance pipeline transportation is established by computational fluid dynamics(CFD)to study the pipeline transportationproper...Based on Bingham rheological model,a three-dimensional numerical simulation model for long-distance pipeline transportation is established by computational fluid dynamics(CFD)to study the pipeline transportationproperties of high sliming paste from a copper mine in China.Based on the rheological properties test,the pressure and velocity of pipeline and elbow are simulated by CFD under different mass concentrations and different stowing capacities.The results show that the pipeline resistance of whole-tailings paste with high sliming while without pumping agent is much higher than that with high sliming and pumping agent at the same mass concentration,and the pipeline resistance of whole-tailings paste with high sliming while without pumping agent is much higher than that with low sliming while without pumping agent.It is very important to add pumping agent to whole-tailings paste with high sliming,and the resistance changes with mass concentration and stowing capacity at the same cement-to-sand ratio of1:5and tailings-to-waste ratio of6:1.However,the change is just limited,that is to say,the paste transportation system is of good stability.Furthermore,at the elbow,the maximum pressure and velocity transfer to the outside of the pipe from the inside.However,lubricating layer is formed at the pipe wall because of high content of fine particles in whole-tailings paste,which will protect the elbow from abrasion.CFD provides an intuitive and accurate basis for pipeline transportation study,and would have a wider application space in the study of paste rheological properties and resistance reduction methods.展开更多
In the paper the development of phased array technique home and abroad is summarized, the overall structure and main research on phased array inspection system are introduced,and meanwhile the future field of study an...In the paper the development of phased array technique home and abroad is summarized, the overall structure and main research on phased array inspection system are introduced,and meanwhile the future field of study and development of phased array ultrasonic inspection technique is pointed out.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri...Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.展开更多
According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The fo...According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.展开更多
We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging o...We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging of a hot oil pipeline.In view of the shortcomings of the MLP-BP model,two optimization methods,the genetic algorithm(GA)and mind evolutionary algorithm(MEA),were used to optimize the MLP-BP model.The research results were applied to the standard friction prediction of three sections of a hot oil pipeline.After the GA and MEA optimizations,the average errors of the three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA,and the mean-square errors were 0.083 and 0.067,respectively.The MEA-BP model prediction results were characterized by high precision and small dispersion.The MEABP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging.The analysis results showed that the model can effectively guide pipe pigging and optimization.There was little sample data for the individual transmission and oil temperature steps because the model was based on actual production data modeling and analysis,which may have affected the accuracy and adaptability of the model.展开更多
A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installe...A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.展开更多
The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development o...The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development of oil industry , The risk assessment of oil industry has many subjects worthy to be studied.The major purpose of the paper is to research the risk cases of long-distance oil pipeline engineering in Ganshu and Shaanxi provinces.展开更多
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow...During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being dis...Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being discovered and developed.Although several high-quality reviews on clinical antibacterial drug pipelines from a global perspective were published recently,none provides comprehensive information on original antibacterial drugs at clinical stages in China.In this review,we summarize the latest progress of novel antibacterial drugs approved for marketing and under clinical evaluation in China since 2019.Information was obtained by consulting official websites,searching commercial databases,retrieving literature,asking personnel from institutions or companies,and other means,and a considerable part of the data covered here has not been included in other reviews.As of June 30,2023,a total of 20 antibacterial projects from 17 Chinese pharmaceutical companies or developers were identified and updated.Among them,two new antibacterial drugs that belong to traditional antibiotic classes were approved by the National Medical Products Administration(NMPA)in China in 2019 and 2021,respectively,and 18 antibacterial agents are in clinical development,with one under regulatory evaluation,five in phase-3,six in phase-2,and six in phase-1.Most of the clinical candidates are new analogs or monocomponents of traditional antibacterial pharmacophore types,including two dual-acting hybrid antibiotics and a recombinant antibacterial protein.Overall,despite there being 17 antibacterial clinical candidates,our analysis indicates that there are still relatively few clinically differentiated antibacterial agents in stages of clinical development in China.Hopefully,Chinese pharmaceutical companies and institutions will develop more innovative and clinically differentiated candidates with good market potential in the future research and development(R&D)of original antibacterial drugs.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
基金Hi-Tech Research and Development Program of China (863 Program)(2002AA601140)
文摘The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.
文摘In recent years, the research on pipeline laser-arc hybrid welding technology has been the important and difficult in the field of welding all over the world. China Petroleum Pipeline Research Institute Co. Ltd. has firstly developed pipeline laser-arc hybrid welding system in China, and executed the welding tests based on X70/X80 steel. Preliminary experiment results showed that hybrid welding could meet the requirements of related standards such as API1104,ASME,etc., the mechanical properties of girth seam are qualified in the case that there were no internal defects. With the development of high-power fiber laser and the continuous improvement of welding equipment, laser-arc hybrid welding technology for pipeline field welding will be available soon.
基金Project(2016YFC0600709)supported by the National Key R&D Program of ChinaProject(51574013)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-17-024A1)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on Bingham rheological model,a three-dimensional numerical simulation model for long-distance pipeline transportation is established by computational fluid dynamics(CFD)to study the pipeline transportationproperties of high sliming paste from a copper mine in China.Based on the rheological properties test,the pressure and velocity of pipeline and elbow are simulated by CFD under different mass concentrations and different stowing capacities.The results show that the pipeline resistance of whole-tailings paste with high sliming while without pumping agent is much higher than that with high sliming and pumping agent at the same mass concentration,and the pipeline resistance of whole-tailings paste with high sliming while without pumping agent is much higher than that with low sliming while without pumping agent.It is very important to add pumping agent to whole-tailings paste with high sliming,and the resistance changes with mass concentration and stowing capacity at the same cement-to-sand ratio of1:5and tailings-to-waste ratio of6:1.However,the change is just limited,that is to say,the paste transportation system is of good stability.Furthermore,at the elbow,the maximum pressure and velocity transfer to the outside of the pipe from the inside.However,lubricating layer is formed at the pipe wall because of high content of fine particles in whole-tailings paste,which will protect the elbow from abrasion.CFD provides an intuitive and accurate basis for pipeline transportation study,and would have a wider application space in the study of paste rheological properties and resistance reduction methods.
文摘In the paper the development of phased array technique home and abroad is summarized, the overall structure and main research on phased array inspection system are introduced,and meanwhile the future field of study and development of phased array ultrasonic inspection technique is pointed out.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金National Natural Science Foundation of China under Grant Nos.52078386 and 52308496SINOMACH Youth Science and Technology Fund under Grant No.QNJJ-PY-2022-02+2 种基金Young Elite Scientists Sponsorship Program under Grant No.BYESS2023432Fund of State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University under Grant No.PBSKL2023A9Fund of China Railway Construction Group Co.,Ltd.under Grant No.LX19-04b。
文摘Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.
文摘According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.
基金supported by National Natural Science Foundation of China(51904327,51774311)Natural Science Foundation of Shandong Province of China(ZR2017MEE022)+1 种基金China Postdoctoral Science Foundation(2019TQ0354,2019M662468)Qingdao postdoctoral researchers applied research project.
文摘We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging of a hot oil pipeline.In view of the shortcomings of the MLP-BP model,two optimization methods,the genetic algorithm(GA)and mind evolutionary algorithm(MEA),were used to optimize the MLP-BP model.The research results were applied to the standard friction prediction of three sections of a hot oil pipeline.After the GA and MEA optimizations,the average errors of the three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA,and the mean-square errors were 0.083 and 0.067,respectively.The MEA-BP model prediction results were characterized by high precision and small dispersion.The MEABP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging.The analysis results showed that the model can effectively guide pipe pigging and optimization.There was little sample data for the individual transmission and oil temperature steps because the model was based on actual production data modeling and analysis,which may have affected the accuracy and adaptability of the model.
基金This project is supported by R&D Foundation of National Petroleum Corporation (CNPC) of China(No.2001411-4).
文摘A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.
文摘The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development of oil industry , The risk assessment of oil industry has many subjects worthy to be studied.The major purpose of the paper is to research the risk cases of long-distance oil pipeline engineering in Ganshu and Shaanxi provinces.
基金supported by the Petrochina's “14th Five-Year plan” Project(2021DJ2804)Sichuan Natural Science Foundation(2023NSFSC0422)。
文摘During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金supported by the National Natural Science Foundation of China(32141003 and 82330110)the CAMS Innovation Fund for Medical Sciences(CIFMS+2 种基金2021-I2M-1-039)the National Science and Technology Infrastructure of China(National Pathogen Resource Center-NPRC-32)the Fundamental Research Funds for the Central Universities(2021-PT350-001).
文摘Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being discovered and developed.Although several high-quality reviews on clinical antibacterial drug pipelines from a global perspective were published recently,none provides comprehensive information on original antibacterial drugs at clinical stages in China.In this review,we summarize the latest progress of novel antibacterial drugs approved for marketing and under clinical evaluation in China since 2019.Information was obtained by consulting official websites,searching commercial databases,retrieving literature,asking personnel from institutions or companies,and other means,and a considerable part of the data covered here has not been included in other reviews.As of June 30,2023,a total of 20 antibacterial projects from 17 Chinese pharmaceutical companies or developers were identified and updated.Among them,two new antibacterial drugs that belong to traditional antibiotic classes were approved by the National Medical Products Administration(NMPA)in China in 2019 and 2021,respectively,and 18 antibacterial agents are in clinical development,with one under regulatory evaluation,five in phase-3,six in phase-2,and six in phase-1.Most of the clinical candidates are new analogs or monocomponents of traditional antibacterial pharmacophore types,including two dual-acting hybrid antibiotics and a recombinant antibacterial protein.Overall,despite there being 17 antibacterial clinical candidates,our analysis indicates that there are still relatively few clinically differentiated antibacterial agents in stages of clinical development in China.Hopefully,Chinese pharmaceutical companies and institutions will develop more innovative and clinically differentiated candidates with good market potential in the future research and development(R&D)of original antibacterial drugs.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.