In this article, we are concerned with the construction of global smooth small-amplitude solutions to the Cauchy problem of the one species Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions....In this article, we are concerned with the construction of global smooth small-amplitude solutions to the Cauchy problem of the one species Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions. Compared with the former result obtained by Duan and Liu in [12] for the two species model, we do not ask the initial perturbation to satisfy the neutral condition and our result covers all physical collision kernels for the full range of intermolecular repulsive potentials.展开更多
Critical dynamics of the random Ising model with long-range interaction decaying as r-(d+σ) where d is the dimensionality) is studied by the theoretic renormalization-group approach. The system is released to an evol...Critical dynamics of the random Ising model with long-range interaction decaying as r-(d+σ) where d is the dimensionality) is studied by the theoretic renormalization-group approach. The system is released to an evolution within a model A dynamics. Asymptotic scaling laws are studied in a frame of the expansion in = 2σ - d. In dimensions d < 2σ. the dynamic exponent z is calculated to the second order in at the random fixed point.展开更多
Based on a new definition of nonlocal variable,this paper establishes the Lagrangian formulation for continuum with internal long-range interactions.Distinguished from the existing theories,the nonlocal term in the La...Based on a new definition of nonlocal variable,this paper establishes the Lagrangian formulation for continuum with internal long-range interactions.Distinguished from the existing theories,the nonlocal term in the Lagrangian formulation automatically satisfies the zero mean condition determined by the action and reaction law.By this formulation,elastic wave in a rod with the internal long-range interactions is investigated.The dispersion of the elastic wave is predicted.展开更多
The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic ...The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic systems. There are indications that the theories of relativity and quantum mechanics do not necessarily have to be in conflict. But more investigations are required for a full understanding to be obtained on these problems.展开更多
The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physio...The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physiological temperature is analytically and numerically investigated in this paper. We have made an analogy with the Heisenberg model Hamiltonian of an anisotropic spin ladder with ferromagnetic legs and anti-ferromagnetic rung coupling. When we limit ourselves to the second-order terms in the Taylor expansion, the DNA dynamics is found to be governed by a completely integrable nonlinear Schr?dinger (NLS) equation. In this case, results show that increasing the value of HC force or LRI parameter enhances the bubble height and reduces the number of base pairs which form the bubble. For the fourth-order terms in a Taylor expansion, results are closely resembling those of second-order terms, and are confirmed by numerical investigation. These results match with some experimental data and thus provide a better representation of the base pairs opening in DNA which is essential for the transcription process.展开更多
The Su-Schrieffer-Heeger Hamiltonian and the Hubbard Hamiltonian within the unrestricted Hartree-Fock scheme have been used to study the effects of e-e interaction on lattice distortions and electronic structures of C...The Su-Schrieffer-Heeger Hamiltonian and the Hubbard Hamiltonian within the unrestricted Hartree-Fock scheme have been used to study the effects of e-e interaction on lattice distortions and electronic structures of C-60, C2-60, C+60, C2+60, When the interaction parameter increases from 0 to 3 eV, the bond variables of the C60 molecules are altered slightly, but the polaron energy levels and the charge density distributions of the C60 molecules are modified seriously.展开更多
By developing the multiple scales method, we analytically study the dynamics properties of gap soliton of Bose- Einstein condensate in optical lattices. It is shown that the gap soliton will appear at Brillouin zone e...By developing the multiple scales method, we analytically study the dynamics properties of gap soliton of Bose- Einstein condensate in optical lattices. It is shown that the gap soliton will appear at Brillouin zone edge of linear band spectrum of the condensates when the interatomic interaction strength is larger than the lattice depth. Moreover, the density of gap soliton starts to be relatively small, while it increases with time and becomes stable.展开更多
The theoretic renormalization group approach is applied to the study of short-time critical behavior of the Ginzburg–Landau model with weakly long-range interactions . The system initially at a high temperature is fi...The theoretic renormalization group approach is applied to the study of short-time critical behavior of the Ginzburg–Landau model with weakly long-range interactions . The system initially at a high temperature is firstly quenched to the critical temperature and then released to an evolution with a model A dynamics. A double expansion in and with of order is employed, where is the spatial dimension. The asymptotic scaling laws and the initial slip exponents and for the order parameter and the response function respectively are calculated to the second order in for close to 2.展开更多
The Su-Schrieffer-Heeger Hamiltonian and the Hubbard Hamiltonian within the unrestricted Hartree-Fock scheme have been used to study the effects of e-e interaction on lattice distortions and electronic structures of C...The Su-Schrieffer-Heeger Hamiltonian and the Hubbard Hamiltonian within the unrestricted Hartree-Fock scheme have been used to study the effects of e-e interaction on lattice distortions and electronic structures of C-60, C2-60, C+60, C2+60, When the interaction parameter increases from 0 to 3 eV, the bond variables of the C60 molecules are altered slightly, but the polaron energy levels and the charge density distributions of the C60 molecules are modified seriously.展开更多
We generalize the computations of the long-range interactions between two parallel stacks of branes to various cases when two stacks of branes are not placed parallel to each other. We classify the nature of interacti...We generalize the computations of the long-range interactions between two parallel stacks of branes to various cases when two stacks of branes are not placed parallel to each other. We classify the nature of interaction(repulsive or attractive) for each special case and this classification can be used to justify the nature of long-range interaction between two complicated brane systems such as brane bound states. We will provide explicit examples in this paper to demonstrate this.展开更多
We investigate the effects of long-range interactions on the spin wave spectra and the competition between magnetic phases on a frustrated square lattice with large spin S.Applying the spin wave theory and assisted wi...We investigate the effects of long-range interactions on the spin wave spectra and the competition between magnetic phases on a frustrated square lattice with large spin S.Applying the spin wave theory and assisted with symmetry analysis,we obtain analytical expressions for spin wave spectra of competing Neel and(π,0)stripe states of systems containing anyorder long-range interactions.In the specific case of long-range interactions with power-law decay,we find surprisingly that the staggered long-range interaction suppresses quantum fluctuation and enlarges the ordered moment,especially in the Neel state,and thus extends its phase boundary to the stripe state.Our findings illustrate the rich possibilities of the roles of long-range interactions,and advocate future investigations in other magnetic systems with different structures of interactions.展开更多
Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quan...Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom-adatom interactions are the driving forces for self- assembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly.展开更多
The coercivity of NdFeB magnets is determined by the coercivity of individual grains and the interaction between the grains composed of the magnets. The coercivity of individual grains and the intergrain interaction d...The coercivity of NdFeB magnets is determined by the coercivity of individual grains and the interaction between the grains composed of the magnets. The coercivity of individual grains and the intergrain interaction depend on the degree of the grain alignment, “tanθ type” Gaussian function is applied to describing the degree of the grain alignment. According to different coercivity mechanisms, there are different formula on the coercivity and the angular dependence of coercivity. The interaction between grains can be classified as the long-range magnetostatic interaction and the exchange-coupling interaction of neighboring grains. For the sintered magnet, the grain size is large and the grain boundaries are mostly separated by the non-magnetic phase. So, the long-range magnetostatic interaction is much stronger than the exchange coupling interaction and it makes the coercivity of the magnet composed of misaligned grains be bigger than that of the magnet composed of ideally aligned grains. The effects of coercivity of individual grains and the intergrain interactions are taken into account, and the starting field theory is in agreement with the experimental result for the coercivity of sintered NdFeB magnets.展开更多
Unusual quadratic dispersion of flexural vibrational mode and red-shift of Raman shift of in-plane mode with increas- ing layer-number are quite common and interesting in low-dimensional materials, but their physical ...Unusual quadratic dispersion of flexural vibrational mode and red-shift of Raman shift of in-plane mode with increas- ing layer-number are quite common and interesting in low-dimensional materials, but their physical origins still remain open questions. Combining ab initio density functional theory calculations with the empirical force-constant model, we study the lattice dynamics of two typical two-dimensional (2D) systems, few-layer h-BN and indium iodide (InI). We found that the unusual quadratic dispersion of flexural mode frequency on wave vector may be comprehended based on the com- petition between atomic interactions of different neighbors. Long-range interaction plays an essential role in determining the dynamic stability of the 2D systems. The frequency red-shift of in-plane Raman-active mode from monolayer to bulk arises mainly from the reduced long-range interaction due to the increasing screening effect.展开更多
By using the mean-field Jordan-Wigner transformation analysis,this paper studies the one-dimensionalspin-1/2 XYZ antiferromagnetic chain in the transverse field with uniform long-range interactions among the z-compone...By using the mean-field Jordan-Wigner transformation analysis,this paper studies the one-dimensionalspin-1/2 XYZ antiferromagnetic chain in the transverse field with uniform long-range interactions among the z-components of the spins.The thermodynamic quantities,such as Helmholtz free energy,the internal energy,the specificheat,and the isothermal susceptibility,are obtained.Under degenerating condition,our results agree with numericalresults of the other literatures.展开更多
We demonstrate the effects of electron-electron (e-e) interactions in monolayer graphene quantum capacitors. Ultrathin yttrium oxide showed excellent per-formance as the dielectric layer in top-gate device geometry....We demonstrate the effects of electron-electron (e-e) interactions in monolayer graphene quantum capacitors. Ultrathin yttrium oxide showed excellent per-formance as the dielectric layer in top-gate device geometry. The structure and dielectric constant of the yttrium oxide layers have been carefully studied. The inverse compressibility retrieved from the quantum capacitance agreed fairly well with the theoretical predictions for the e--e interactions in monolayer graphene at different temperatures. We found that electron-hole puddles played a significant role in the low-density carrier region in graphene. By considering the temperature-dependent charge fluctuation, we established a model to explain the round-off effect originating from the e-e interactions in monolayer graphene near the Dirac point.展开更多
A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical bra...A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical branches have been derived. It is found that the temperature-independent contributions are very important, especially at low temperature. The total pressure-induced shift (PS) of a level (or spectral line or band) is the algebraic sum of its PS without EPI and its PS due to EPI. By means of both the theory for shifts of energy spectra due to EPI and the theory for PS of energy spectra, the total PS of R<SUB>1</SUB> line of tunable laser crystal GSGG:Cr<SUP>3+</SUP> at 70 K as well as the ones of its R<SUB>1</SUB> line, R<SUB>2</SUB> line and U band at 300 K will be successfully calculated and explained in this series of papers.展开更多
The cell differentiation in multicellular eukaryotes is one of the most curious phenomena. The recent gene and genome sequencing reveals that most of differentiated cells in a multicellular eukaryote carry a common ge...The cell differentiation in multicellular eukaryotes is one of the most curious phenomena. The recent gene and genome sequencing reveals that most of differentiated cells in a multicellular eukaryote carry a common genome and that such a genome contains the expanded repertoire of genes of proteins associated with the cell-cell adhesion, intercellular and intracellular signal transduction and transcriptional regulation. The cell differentiation occurs in the assembly consisting of a large number of cells after the cell proliferation, and this process is regarded as a stochastic process. Its formulation starts with the master equation in the present paper. The cell differentiation is reproduced in the equation of the most probable path derived from the master equation, when the short-range and long-range interactions between the cells as well as the transition probability between the proliferation and differentiation modes are considered. Moreover, the equation of the most probable path explains the experimental results such as the “memory”, tissue culture and the preparation of induced pluripotent stem (iPS) cells in embryology, if the long-range interaction is considered to be the regulation of gene transcription under the influence of intracellular signal transduction from the receptor accepting the ligand secreted by other types of cells and the short-range interaction is considered to stabilize the intracellular signal transduction by the contact between the same type of cells. The “organizer” found in the initial development of embryo is also explained as the cells that preferentially express the specific gene of a ligand to rouse the long-range interaction. In conclusion, the present study proposes that the complicated intercellular and intracellular signal transduction causing the cell differentiation is ascribed to the long-range interaction between distinctive types of cells and the short-range interaction between the same type of cells.展开更多
The numerical simulation of 2D simple square lattice of Ising superspins,that interact via the Ruderman–Kittel–Kasuya–Yosida(RKKY)exchange interaction is performed.It is found,that at low temperatures in the resear...The numerical simulation of 2D simple square lattice of Ising superspins,that interact via the Ruderman–Kittel–Kasuya–Yosida(RKKY)exchange interaction is performed.It is found,that at low temperatures in the researched systems predominantly realized labyrinth domain structure.The modeled image of magnetization distribution does not coincide with the image of energy distribution.Hysteresis loops of the samples and labyrinth domain structures similarly obtained by Monte Carlo method,are also observed in physical experiments.展开更多
With the strong-field scheme and trigonal bases, the complete d<SUP>3</SUP> energy matrix in a trigonally distorted cubic-field has been constructed. By diagonalizing this matrix, the normal-pressure energ...With the strong-field scheme and trigonal bases, the complete d<SUP>3</SUP> energy matrix in a trigonally distorted cubic-field has been constructed. By diagonalizing this matrix, the normal-pressure energy spectra and wavefunctions of GSGG:Cr<SUP>3+</SUP> at 70 K and 300 K have been calculated without the electron-phonon interaction (EPI), respectively. Further, the contributions to energy spectra from EPI at two temperatures have also been calculated, where temperature-independent terms of EPI are found to be dominant. The sum of aforementioned two parts gives rise to the total energy spectrum. The calculated results are in good agreement with all the optical-spectral experimental data and the experimental results of and . It is found that the contribution from EPI to R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> with taking into account spin-orbit interaction (H<SUB>so</SUB>) and trigonal field (V<SUB>trig</SUB>) is much larger than the one with neglecting H<SUB>so</SUB> and V<SUB>trig</SUB>, and accordingly it is essential for the calculation of the EPI effect to take first into account H<SUB>so</SUB> and V<SUB>trig</SUB>. The admixture of base-wavefunctions,and , the average energy separation and their variations with temperature have been calculated and discussed.展开更多
基金supported by the Fundamental Research Funds for the Central Universitiessupported by a grant from the National Science Foundation of China under contract 11501556+1 种基金supported by a grant from the National Natural Science Foundation under contract 11501187supported by three grants from the National Natural Science Foundation of China under contracts 10925103,11271160,and 11261160485
文摘In this article, we are concerned with the construction of global smooth small-amplitude solutions to the Cauchy problem of the one species Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions. Compared with the former result obtained by Duan and Liu in [12] for the two species model, we do not ask the initial perturbation to satisfy the neutral condition and our result covers all physical collision kernels for the full range of intermolecular repulsive potentials.
文摘Critical dynamics of the random Ising model with long-range interaction decaying as r-(d+σ) where d is the dimensionality) is studied by the theoretic renormalization-group approach. The system is released to an evolution within a model A dynamics. Asymptotic scaling laws are studied in a frame of the expansion in = 2σ - d. In dimensions d < 2σ. the dynamic exponent z is calculated to the second order in at the random fixed point.
基金supported by the Aviation Science Foundation of China (20080252006)
文摘Based on a new definition of nonlocal variable,this paper establishes the Lagrangian formulation for continuum with internal long-range interactions.Distinguished from the existing theories,the nonlocal term in the Lagrangian formulation automatically satisfies the zero mean condition determined by the action and reaction law.By this formulation,elastic wave in a rod with the internal long-range interactions is investigated.The dispersion of the elastic wave is predicted.
文摘The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic systems. There are indications that the theories of relativity and quantum mechanics do not necessarily have to be in conflict. But more investigations are required for a full understanding to be obtained on these problems.
文摘The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physiological temperature is analytically and numerically investigated in this paper. We have made an analogy with the Heisenberg model Hamiltonian of an anisotropic spin ladder with ferromagnetic legs and anti-ferromagnetic rung coupling. When we limit ourselves to the second-order terms in the Taylor expansion, the DNA dynamics is found to be governed by a completely integrable nonlinear Schr?dinger (NLS) equation. In this case, results show that increasing the value of HC force or LRI parameter enhances the bubble height and reduces the number of base pairs which form the bubble. For the fourth-order terms in a Taylor expansion, results are closely resembling those of second-order terms, and are confirmed by numerical investigation. These results match with some experimental data and thus provide a better representation of the base pairs opening in DNA which is essential for the transcription process.
文摘The Su-Schrieffer-Heeger Hamiltonian and the Hubbard Hamiltonian within the unrestricted Hartree-Fock scheme have been used to study the effects of e-e interaction on lattice distortions and electronic structures of C-60, C2-60, C+60, C2+60, When the interaction parameter increases from 0 to 3 eV, the bond variables of the C60 molecules are altered slightly, but the polaron energy levels and the charge density distributions of the C60 molecules are modified seriously.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10674070 and 10674113, the Jiangsu Provincial Postdoctoral Science Foundation (No 0601043B), and the Natural Science Foundation of Hunan Province (No 06JJ50006).
文摘By developing the multiple scales method, we analytically study the dynamics properties of gap soliton of Bose- Einstein condensate in optical lattices. It is shown that the gap soliton will appear at Brillouin zone edge of linear band spectrum of the condensates when the interatomic interaction strength is larger than the lattice depth. Moreover, the density of gap soliton starts to be relatively small, while it increases with time and becomes stable.
文摘The theoretic renormalization group approach is applied to the study of short-time critical behavior of the Ginzburg–Landau model with weakly long-range interactions . The system initially at a high temperature is firstly quenched to the critical temperature and then released to an evolution with a model A dynamics. A double expansion in and with of order is employed, where is the spatial dimension. The asymptotic scaling laws and the initial slip exponents and for the order parameter and the response function respectively are calculated to the second order in for close to 2.
文摘The Su-Schrieffer-Heeger Hamiltonian and the Hubbard Hamiltonian within the unrestricted Hartree-Fock scheme have been used to study the effects of e-e interaction on lattice distortions and electronic structures of C-60, C2-60, C+60, C2+60, When the interaction parameter increases from 0 to 3 eV, the bond variables of the C60 molecules are altered slightly, but the polaron energy levels and the charge density distributions of the C60 molecules are modified seriously.
基金Supported by National Natural Science Foundation of China under Grant No.11235010
文摘We generalize the computations of the long-range interactions between two parallel stacks of branes to various cases when two stacks of branes are not placed parallel to each other. We classify the nature of interaction(repulsive or attractive) for each special case and this classification can be used to justify the nature of long-range interaction between two complicated brane systems such as brane bound states. We will provide explicit examples in this paper to demonstrate this.
基金supported by NKRDPC2018YFA0306001,NKRDPC-2022YFA1402802,NSFC-92165204,NSFC-11974432,GBABRF-2019A1515011337,Shenzhen International Quantum Academy(Grant No.SIQA202102)Leading Talent Program of Guangdong Special Projects(No.201626003).
文摘We investigate the effects of long-range interactions on the spin wave spectra and the competition between magnetic phases on a frustrated square lattice with large spin S.Applying the spin wave theory and assisted with symmetry analysis,we obtain analytical expressions for spin wave spectra of competing Neel and(π,0)stripe states of systems containing anyorder long-range interactions.In the specific case of long-range interactions with power-law decay,we find surprisingly that the staggered long-range interaction suppresses quantum fluctuation and enlarges the ordered moment,especially in the Neel state,and thus extends its phase boundary to the stripe state.Our findings illustrate the rich possibilities of the roles of long-range interactions,and advocate future investigations in other magnetic systems with different structures of interactions.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB923401)the National Natural Science Foundation of China(Grant Nos.10974087,11374145,11304150,and 11023002)
文摘Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom-adatom interactions are the driving forces for self- assembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly.
基金Project supported by the National Natural Science Foundation of China (Grant No. 59571017)
文摘The coercivity of NdFeB magnets is determined by the coercivity of individual grains and the interaction between the grains composed of the magnets. The coercivity of individual grains and the intergrain interaction depend on the degree of the grain alignment, “tanθ type” Gaussian function is applied to describing the degree of the grain alignment. According to different coercivity mechanisms, there are different formula on the coercivity and the angular dependence of coercivity. The interaction between grains can be classified as the long-range magnetostatic interaction and the exchange-coupling interaction of neighboring grains. For the sintered magnet, the grain size is large and the grain boundaries are mostly separated by the non-magnetic phase. So, the long-range magnetostatic interaction is much stronger than the exchange coupling interaction and it makes the coercivity of the magnet composed of misaligned grains be bigger than that of the magnet composed of ideally aligned grains. The effects of coercivity of individual grains and the intergrain interactions are taken into account, and the starting field theory is in agreement with the experimental result for the coercivity of sintered NdFeB magnets.
基金Project supported by the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation from NSFC and CASC,China(Grant No.U1537204)the National Key Research and Development Program of China(Grant No.2017YFA0206301)the National Natural Science Foundation of China(Grant No.51702146)
文摘Unusual quadratic dispersion of flexural vibrational mode and red-shift of Raman shift of in-plane mode with increas- ing layer-number are quite common and interesting in low-dimensional materials, but their physical origins still remain open questions. Combining ab initio density functional theory calculations with the empirical force-constant model, we study the lattice dynamics of two typical two-dimensional (2D) systems, few-layer h-BN and indium iodide (InI). We found that the unusual quadratic dispersion of flexural mode frequency on wave vector may be comprehended based on the com- petition between atomic interactions of different neighbors. Long-range interaction plays an essential role in determining the dynamic stability of the 2D systems. The frequency red-shift of in-plane Raman-active mode from monolayer to bulk arises mainly from the reduced long-range interaction due to the increasing screening effect.
基金the Open Fund of Jiangsu Laboratory of Advanced Functional Materials under Grant No.06KFJJ004
文摘By using the mean-field Jordan-Wigner transformation analysis,this paper studies the one-dimensionalspin-1/2 XYZ antiferromagnetic chain in the transverse field with uniform long-range interactions among the z-components of the spins.The thermodynamic quantities,such as Helmholtz free energy,the internal energy,the specificheat,and the isothermal susceptibility,are obtained.Under degenerating condition,our results agree with numericalresults of the other literatures.
文摘We demonstrate the effects of electron-electron (e-e) interactions in monolayer graphene quantum capacitors. Ultrathin yttrium oxide showed excellent per-formance as the dielectric layer in top-gate device geometry. The structure and dielectric constant of the yttrium oxide layers have been carefully studied. The inverse compressibility retrieved from the quantum capacitance agreed fairly well with the theoretical predictions for the e--e interactions in monolayer graphene at different temperatures. We found that electron-hole puddles played a significant role in the low-density carrier region in graphene. By considering the temperature-dependent charge fluctuation, we established a model to explain the round-off effect originating from the e-e interactions in monolayer graphene near the Dirac point.
文摘A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical branches have been derived. It is found that the temperature-independent contributions are very important, especially at low temperature. The total pressure-induced shift (PS) of a level (or spectral line or band) is the algebraic sum of its PS without EPI and its PS due to EPI. By means of both the theory for shifts of energy spectra due to EPI and the theory for PS of energy spectra, the total PS of R<SUB>1</SUB> line of tunable laser crystal GSGG:Cr<SUP>3+</SUP> at 70 K as well as the ones of its R<SUB>1</SUB> line, R<SUB>2</SUB> line and U band at 300 K will be successfully calculated and explained in this series of papers.
文摘The cell differentiation in multicellular eukaryotes is one of the most curious phenomena. The recent gene and genome sequencing reveals that most of differentiated cells in a multicellular eukaryote carry a common genome and that such a genome contains the expanded repertoire of genes of proteins associated with the cell-cell adhesion, intercellular and intracellular signal transduction and transcriptional regulation. The cell differentiation occurs in the assembly consisting of a large number of cells after the cell proliferation, and this process is regarded as a stochastic process. Its formulation starts with the master equation in the present paper. The cell differentiation is reproduced in the equation of the most probable path derived from the master equation, when the short-range and long-range interactions between the cells as well as the transition probability between the proliferation and differentiation modes are considered. Moreover, the equation of the most probable path explains the experimental results such as the “memory”, tissue culture and the preparation of induced pluripotent stem (iPS) cells in embryology, if the long-range interaction is considered to be the regulation of gene transcription under the influence of intracellular signal transduction from the receptor accepting the ligand secreted by other types of cells and the short-range interaction is considered to stabilize the intracellular signal transduction by the contact between the same type of cells. The “organizer” found in the initial development of embryo is also explained as the cells that preferentially express the specific gene of a ligand to rouse the long-range interaction. In conclusion, the present study proposes that the complicated intercellular and intracellular signal transduction causing the cell differentiation is ascribed to the long-range interaction between distinctive types of cells and the short-range interaction between the same type of cells.
基金Scientific Fund of Far Eastern Federal University(#12−07−13000−18/13)the state task of the Ministry of Education and Science of Russia#559,supported this work.
文摘The numerical simulation of 2D simple square lattice of Ising superspins,that interact via the Ruderman–Kittel–Kasuya–Yosida(RKKY)exchange interaction is performed.It is found,that at low temperatures in the researched systems predominantly realized labyrinth domain structure.The modeled image of magnetization distribution does not coincide with the image of energy distribution.Hysteresis loops of the samples and labyrinth domain structures similarly obtained by Monte Carlo method,are also observed in physical experiments.
文摘With the strong-field scheme and trigonal bases, the complete d<SUP>3</SUP> energy matrix in a trigonally distorted cubic-field has been constructed. By diagonalizing this matrix, the normal-pressure energy spectra and wavefunctions of GSGG:Cr<SUP>3+</SUP> at 70 K and 300 K have been calculated without the electron-phonon interaction (EPI), respectively. Further, the contributions to energy spectra from EPI at two temperatures have also been calculated, where temperature-independent terms of EPI are found to be dominant. The sum of aforementioned two parts gives rise to the total energy spectrum. The calculated results are in good agreement with all the optical-spectral experimental data and the experimental results of and . It is found that the contribution from EPI to R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> with taking into account spin-orbit interaction (H<SUB>so</SUB>) and trigonal field (V<SUB>trig</SUB>) is much larger than the one with neglecting H<SUB>so</SUB> and V<SUB>trig</SUB>, and accordingly it is essential for the calculation of the EPI effect to take first into account H<SUB>so</SUB> and V<SUB>trig</SUB>. The admixture of base-wavefunctions,and , the average energy separation and their variations with temperature have been calculated and discussed.