In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
In order to probe the mechanism of the phenomena of seismic electromagnetic radiation (EMR), we have completed field experiment on EMR caused by explosiom of rocks. In the experiments, the data of medium lo...In order to probe the mechanism of the phenomena of seismic electromagnetic radiation (EMR), we have completed field experiment on EMR caused by explosiom of rocks. In the experiments, the data of medium low freguency (<5000 Hz) EMR caused by 26 explosion tests of small dimension rocks have been obtained. This paper shows some representative observational results of the field experiment. The observational results show that, nearly 20 points of the 26 explosive points, the EMR phenomena are recorded at various degrees in the related explosive processes. The EMR intensities decay with the distance from explosive origins and increase with the explosive energy. The EMR records have certain repeatability (under the same condition), complexity( multiple EMR effects caused by one explosion) and regional characteristics such as rock structure and observational direction etc.展开更多
Fish traps were investigated to understand the effects of season, bait type, trap size, and trap soak time on catch rates, catch composition, and trap loss rates from March 2004 to September 2005, to improve the perfo...Fish traps were investigated to understand the effects of season, bait type, trap size, and trap soak time on catch rates, catch composition, and trap loss rates from March 2004 to September 2005, to improve the performance and management of Kuwait's gargoor (cage style fish trap) fishery, which used to be the nation's most important one in terms of value and landings volume. Catch rates were the highest in April/May (5 8 kg/trap haul) and again in December (7 kg/trap haul). Bait type and trap size also affected catch rates and species composition. Of the seven baits tested, the best catch rates, 〉5 kg/trap haul, occurred with cuttlefish (Sepia pharaonis), but wolf-herring (Chiroeentrus dorab) and mullet (Liza klunzingeri) also produced good results (4-5 kg/trap haul). Within the five tested sizes, the two largest-sized traps captured more fish and larger size fish. Analysis of variance (ANOVA) showed significant differences of catch rate among traps with different baits as well as among traps of different sizes. Duncan test further revealed these differences between two specific baits and sizes. Cluster Analysis of species composition showed more differences among different baits than among different trap sizes. Longer soak times did not result in larger catch rates, but increased trap loss. About 10-day soak time resulted in trap loss 7%, while 40-day soak time could result in a loss of around 20%. Consequently, it is recommended that the gargoor be checked every 10 or fewer days. The average overall catch rate during the study period was lower than that of 1980s (4.5 vs. 5.8 kg/trap haul), indicating a possible decline offish abundance in Kuwait's waters. It is recommended that the number of gargoor fishing boats and gargoors from each boat should be limited to allow stock rehabilitation.展开更多
The 5G network has been intensively investigated to realize the ongoing early deployment stage as an effort to match the exponential growth of the number of connected users and their increasing demands for high throug...The 5G network has been intensively investigated to realize the ongoing early deployment stage as an effort to match the exponential growth of the number of connected users and their increasing demands for high throughput,bandwidth with Quality of Service(QoS),and low latency.Given that most of the spectrums below 6 GHz are nearly used up,it is not feasible to employ the traditional spectrum,which is currently in use.Therefore,a promising and highly feasible effort to satisfy this insufficient frequency spectrum is to acquire new frequency bands for next-generation mobile communications.Toward this end,the primary effort has been focused on utilizing the millimeter-wave(mmWave)as the most promising candidate for the frequency spectrum.However,though the mmWave frequency band can fulfill the desired bandwidth requirements,it has been demonstrated to endure several issues like scattering,atmospheric absorption,fading,and especially penetration losses compared to the existing sub-6 GHz frequency band.Then,it is fundamental to optimize the mmWave band propagation channel to facilitate the practical 5G implementation for the network operators.Therefore,this study intends to investigate the outdoor channel characteristics of 26,28,36,and 38 GHz frequency bands for the communication infrastructure at the building to the ground floor in both Line of Sight(LOS)and Non-Line of Sight(NLOS)environments.The experimental campaign has studied the propagation path loss models such as Floating-Intercept(FI)and Close-In(CI)for the building to ground floor environment in LOS and NLOS scenarios.The findings obtained from the field experiments clearly show that the CI propagation model delivers much better performance in comparison with the FI model,thanks to its simple setup,accuracy,and precise function.展开更多
Many of the important questions facing farming systems in the world today require long-term studies to provide meaningful information and answers. A long-term agronomic experiment (LTAE) should (1) have long-term obje...Many of the important questions facing farming systems in the world today require long-term studies to provide meaningful information and answers. A long-term agronomic experiment (LTAE) should (1) have long-term objectives; (2) study important soil processes or ecological processes; and (3) be related to the productivity and sustainability of systems. A well established LTAE can provide both insights into how the system operates and foresight into where the system goes. The prerequisites for setting up a LTAE are the secured land, continuous funding and dedicated scientists. A number of principles must be considered carefully when establishing a LTAE, (1) the site must be representative of large areas; (2) the treatments should be simple, but focusing on the big questions; (3) the plots should be large enough to allow subsequent modification of the experiment if this becomes necessary; (4) crop rotations should minimise, wherever possible, the risk of build-up of pests and diseases, and rotational phase should be considered in a rotational experiment; (5) a clearly defined experimental protocol should be developed to ensure data collected is scientifically valid and statistically analysable, but with flexibility to allow essential changes; (6) soil samples, possibly plant samples, should be achieved to provide better answer to the original questions when new, perhaps more accurate analytical techniques are developed, or answer new research questions that were not considered in the original design. The MASTER experiment in Australia was used as a case study to demonstrate how these principles are implemented in practice.展开更多
[Objective] The aim was to study the effect of three new fungicides against rice sheath blight in field experiment. [Methods] The experiment set up 7 treatments with three times of repetition and designed by random gr...[Objective] The aim was to study the effect of three new fungicides against rice sheath blight in field experiment. [Methods] The experiment set up 7 treatments with three times of repetition and designed by random grouping. By using 5 sampling points in each plot, and investigating continuous 4 holes of each point, total plants, diseased plants and disease degrees were recorded. Then disease index and control efficiency were calculated, and variance analysis was carried out. [Results] 300 or 450 ml/hm^2 azoxystrobin + difenoconazole 325 g/L SC had better control efficiency to rice sheath blight and had no phytotoxicity effect, we should use it at the initial disease stage and continuously spray 2-3 times. [Conclusion] The experiment provided a theoretical basis for controlling rice sheath blight using fungicides.展开更多
[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion o...[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion on productivity of sloping field was studied. [Result] The results showed that there was extremely significantly posi- tive correlation between the thicknesses of covered topsoil with either the yield of maize seeds or the yield of maize stalks, which indicated that the yields of maize seeds and maize stalks decreased extremely significantly with the increase of the amount of surface soil loss caused by erosion on the sloping field. The yields of maize seeds and maize stalks decreased by 29.62% and 24.46% respectively in the treatment with removal of a 15 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 17.31% and 20.14% re- spectively in the treatment with removal of a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 12.69% and 11.51% respectively in the treatment with removal of a 5 cm thick layer of ma- ture topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 10.00% and 9.35% respectively in the treatment with covering with a 5 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 15.77% and 16.19% respectively in the treatment with covering with a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 17.69% and 25.18% respectively in the treat- ment with covering with a 15 cm thick layer of mature topsoil in the plow layer. [Conclusion] This study provides a basis for assessing the effect of soil erosion on sloping field.展开更多
Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expan...Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expansion in south China. A study was carried out to evaluate the relationship between the SOC content and organic carbon input under various organic amendments at a long-term fertilization experiment that was established on a red soil under a double rice cropping system in 1981. The treatments included non-fertilization (CK), nitrogen-phosphorus-potassium fertilization in early rice only (NPK), green manure (Astragalus sinicus L.) in early rice only (OM1), high rate of green manure in early rice only (OM2), combined green manure in early rice and farmyard manure in late rice (OM3), combined green manure in early rice, farmyard manure in late rice and rice straw mulching in winter (OM4), combined green manure in early rice and rice straw mulching in winter (OMS). Our data showed that the SOC content was the highest under OM3 and OM4, followed by OM1, OM2 and OM5, then NPK fertilization, and the lowest under non-fertilization. However, our analyses in SOC stock indicated a significant difference between OM3 (33.9 t ha^-1) and OM4 (31.8 t ha^-1), but no difference between NPK fertilization (27 t ha^-1) and nonfertilization (28.1 t ha^-1). There was a significant linear increase in SOC over time for all treatments, and the slop of linear equation was greater in organic manure treatments (0.276-0.344 g kg-1 yr^-1) than in chemical fertilizer (0.216 g kg^-1 yr^-1) and no fertilizer (0.127 g kg^-1 yr^-1).展开更多
The content of organic matter (OM), nitrogen (N), phosphorus (P), and potassium (K) in the three selected soils, including Calcaric Purpli-Orthic Primosols (purple sand-shale parent material), Dystric Turbi-...The content of organic matter (OM), nitrogen (N), phosphorus (P), and potassium (K) in the three selected soils, including Calcaric Purpli-Orthic Primosols (purple sand-shale parent material), Dystric Turbi-Anthric Primosols (quaternary red clay parent material) and Typic Udi-Sandic Primosols (granite parent material) were studied under a long-term experiment by using crop straw and inorganic fertilizers at the Hunan Red Soil Experiment Station of Chinese Academy of Agricultural Sciences. The results showed that the contents of OM, N, P and K in the three selected soils increased after 23 years application of crop straw and inorganic fertilizers, but the contents increased much less when crop straw or inorganic fertilizers was applied alone. The nutrient contents in the three soils developed from granite changed more remarkably than those in the soil derived from quaternary red clay and purple sand-shale. It was also found that the contents of OM, N, and P increased slightly in the treatments without applying fertilizers or returning the crop straw to the root bed. Combined application of inorganic fertilizers and crop straw could remarkably increase the contents of OM, alkalihydrolyzable N and available K, the positive correlation between application of organic fertilizers and increase of OM in soil did not always happened, it provided evidence for the relation between appropriate C/N ratio and accumulation of OM in soil. The increase of nutrient content was influenced by the soil properties. By comparing the contents of nutrient in 0-20 cm depth in the three different soils, it was concluded that the most increases of OM, alkali-hydrolyzable N, and available P were observed in Typic Udi-Sandic Primosols with the average increase by 3.03, 27.38, and 21.73 mg kg^-1, respectively. The available K increased in Dystric Turbi-Anthric Primosols with the average increase by 25.82 mg kg^-1, while it decreased in Calcaric Purpli-Orthic Primosols and Typic Udi-Sandic Primosols. It was concluded that the application of inorganic fertilizer and crop straw was important to improve the soil fertility for all of three selected soils. The straw return to the field had played a significant role for enhancement of the soil quality in the study areas. The application of inorganic fertilizer combined with the straw return to the fields could remarkably improve the soil fertility.展开更多
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was c...To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
Aiming at the needs of mechanism analysis of rainstorms and development of numerical prediction models in south China, the Guangzhou Institute of Tropical and Marine Meteorology of China Meteorological Administration ...Aiming at the needs of mechanism analysis of rainstorms and development of numerical prediction models in south China, the Guangzhou Institute of Tropical and Marine Meteorology of China Meteorological Administration and the Chinese Academy of Meteorological Sciences jointly set up the Longmen Cloud Physics Field Experiment Base,China Meteorological Administration. This paper introduces the instruments and field experiments of this base, provides an overview of the recent advances in retrieval algorithms of microphysical parameters, improved understanding of microphysical characteristics, as well as the formation mechanisms and numerical prediction of heavy rainfalls in south China based on the field experiments dataset.展开更多
Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recogn...Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments.However,whether a slope can actually seal pore air continues to be debated by researchers.In this study,a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope,and a field experiment is conducted to realistically test the sealing conditions of a slope.According to the numerical simulation,the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the“inhalation zone”and“overflow zone”,respectively.Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level,and it causes pore air pressure to reach the cm level.A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration.Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process.The monitoring results show that the pore air pressure in the slope changed,which indicates that the slope can seal air.Moreover,the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall,which agrees well with the numerical simulation results.展开更多
The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Po...The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL(Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data(Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier–Stokes equations, and can produce very high-resolution(1–5 m) wind fields of a complex neighborhood scale urban building canopy(~ 1 km ×1km) in less than 3 min when run on a personal computer.展开更多
A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon (SOC) from 1990 to 2012 with seven fertilization treatments. The seven ...A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon (SOC) from 1990 to 2012 with seven fertilization treatments. The seven treatments included an unfertilized control (CK) and six different combinations of phosphorus (P), potassium (K), nitrogen (N), straw (S) and animal manure (M). The balanced fertilization treatments had significantly (P〈0.05) higher average yields than the unbalanced ones. The treatment with 2/3 N from potassium sulfate (NPK) and 1/3 N from farmyard manure (NPKM) had a higher average yield than the other treatments. The average yields (over the 23 years) in the treatments of NPK, and urea, calcium superphosphate (NP) did not differ significantly (P〉0.05) but were higher than that in the treatment with urea and potassium sulfate (NK; P〈0.05). The results also show that the highest increases in SOC (P〈0.05) occurred in NPKM with a potential increase of 1.2 t C/(hm2.a). The increase in SOC was only 0.31, 0.30 and 0.12 t C/(hm2.a) for NPKS (9/10 N from NPK and 1/10 N from straw), NPK and NP, respectively; and the SOC in the NP, NK and CK treatments were approaching equilibrium and so did not rise or fall significantly over the 23-year experiment. A complete NPK plus manure fertilization program is recommended for this extremely arid region to maximize both yields and carbon sequestration.展开更多
Sequestration of carbon dioxide(CO<sub>2</sub>) in deep, unminable coalseam is an innovative technology, because it can not only reduce greenhouse gas in the atmosphere,but also enhance coalbed methane r...Sequestration of carbon dioxide(CO<sub>2</sub>) in deep, unminable coalseam is an innovative technology, because it can not only reduce greenhouse gas in the atmosphere,but also enhance coalbed methane recovery(CO<sub>2</sub>-ECBM).Lots of research have been carried out on this topic in recent years.However,few of them were focused on the comparison of the展开更多
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
Seven ground cucumber varieties were cultivated in open field for the comparative experiment. The results showed that Texuan cucumber and Yantai ground cucumber had good commodity characters,good taste and high yield,...Seven ground cucumber varieties were cultivated in open field for the comparative experiment. The results showed that Texuan cucumber and Yantai ground cucumber had good commodity characters,good taste and high yield,and their output value exceeded 16 000 yuan/666. 7 m2,so they are more suitable for open cultivation in Yantai region. The next ones are Meiyu Diguawang and Aweishi ground cucumber.展开更多
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.
文摘In order to probe the mechanism of the phenomena of seismic electromagnetic radiation (EMR), we have completed field experiment on EMR caused by explosiom of rocks. In the experiments, the data of medium low freguency (<5000 Hz) EMR caused by 26 explosion tests of small dimension rocks have been obtained. This paper shows some representative observational results of the field experiment. The observational results show that, nearly 20 points of the 26 explosive points, the EMR phenomena are recorded at various degrees in the related explosive processes. The EMR intensities decay with the distance from explosive origins and increase with the explosive energy. The EMR records have certain repeatability (under the same condition), complexity( multiple EMR effects caused by one explosion) and regional characteristics such as rock structure and observational direction etc.
基金Supported by the Kuwait Foundation for the Advancement of Science (KFAS)the Public Authority for Agriculture and Fisheries Resources(PAAFR)+1 种基金the Project of Investigation to Improve Kuwait’s Demersal Trap Fishery of Kuwait Institute for Scientific Research (KISR)which was conducted at the Mariculture and Fisheries Department of KISR
文摘Fish traps were investigated to understand the effects of season, bait type, trap size, and trap soak time on catch rates, catch composition, and trap loss rates from March 2004 to September 2005, to improve the performance and management of Kuwait's gargoor (cage style fish trap) fishery, which used to be the nation's most important one in terms of value and landings volume. Catch rates were the highest in April/May (5 8 kg/trap haul) and again in December (7 kg/trap haul). Bait type and trap size also affected catch rates and species composition. Of the seven baits tested, the best catch rates, 〉5 kg/trap haul, occurred with cuttlefish (Sepia pharaonis), but wolf-herring (Chiroeentrus dorab) and mullet (Liza klunzingeri) also produced good results (4-5 kg/trap haul). Within the five tested sizes, the two largest-sized traps captured more fish and larger size fish. Analysis of variance (ANOVA) showed significant differences of catch rate among traps with different baits as well as among traps of different sizes. Duncan test further revealed these differences between two specific baits and sizes. Cluster Analysis of species composition showed more differences among different baits than among different trap sizes. Longer soak times did not result in larger catch rates, but increased trap loss. About 10-day soak time resulted in trap loss 7%, while 40-day soak time could result in a loss of around 20%. Consequently, it is recommended that the gargoor be checked every 10 or fewer days. The average overall catch rate during the study period was lower than that of 1980s (4.5 vs. 5.8 kg/trap haul), indicating a possible decline offish abundance in Kuwait's waters. It is recommended that the number of gargoor fishing boats and gargoors from each boat should be limited to allow stock rehabilitation.
基金supported by the School of Fundamental Science and Engineering,Faculty of Science and Engineering,Waseda University,Japansupported under the Dana Impak Perdana(DIP)Grant Scheme DIP-2018-040 and FRGS/1/2018/TK04/UKM/02/17.
文摘The 5G network has been intensively investigated to realize the ongoing early deployment stage as an effort to match the exponential growth of the number of connected users and their increasing demands for high throughput,bandwidth with Quality of Service(QoS),and low latency.Given that most of the spectrums below 6 GHz are nearly used up,it is not feasible to employ the traditional spectrum,which is currently in use.Therefore,a promising and highly feasible effort to satisfy this insufficient frequency spectrum is to acquire new frequency bands for next-generation mobile communications.Toward this end,the primary effort has been focused on utilizing the millimeter-wave(mmWave)as the most promising candidate for the frequency spectrum.However,though the mmWave frequency band can fulfill the desired bandwidth requirements,it has been demonstrated to endure several issues like scattering,atmospheric absorption,fading,and especially penetration losses compared to the existing sub-6 GHz frequency band.Then,it is fundamental to optimize the mmWave band propagation channel to facilitate the practical 5G implementation for the network operators.Therefore,this study intends to investigate the outdoor channel characteristics of 26,28,36,and 38 GHz frequency bands for the communication infrastructure at the building to the ground floor in both Line of Sight(LOS)and Non-Line of Sight(NLOS)environments.The experimental campaign has studied the propagation path loss models such as Floating-Intercept(FI)and Close-In(CI)for the building to ground floor environment in LOS and NLOS scenarios.The findings obtained from the field experiments clearly show that the CI propagation model delivers much better performance in comparison with the FI model,thanks to its simple setup,accuracy,and precise function.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (CXTD-Z2005-2-4)
文摘Many of the important questions facing farming systems in the world today require long-term studies to provide meaningful information and answers. A long-term agronomic experiment (LTAE) should (1) have long-term objectives; (2) study important soil processes or ecological processes; and (3) be related to the productivity and sustainability of systems. A well established LTAE can provide both insights into how the system operates and foresight into where the system goes. The prerequisites for setting up a LTAE are the secured land, continuous funding and dedicated scientists. A number of principles must be considered carefully when establishing a LTAE, (1) the site must be representative of large areas; (2) the treatments should be simple, but focusing on the big questions; (3) the plots should be large enough to allow subsequent modification of the experiment if this becomes necessary; (4) crop rotations should minimise, wherever possible, the risk of build-up of pests and diseases, and rotational phase should be considered in a rotational experiment; (5) a clearly defined experimental protocol should be developed to ensure data collected is scientifically valid and statistically analysable, but with flexibility to allow essential changes; (6) soil samples, possibly plant samples, should be achieved to provide better answer to the original questions when new, perhaps more accurate analytical techniques are developed, or answer new research questions that were not considered in the original design. The MASTER experiment in Australia was used as a case study to demonstrate how these principles are implemented in practice.
文摘[Objective] The aim was to study the effect of three new fungicides against rice sheath blight in field experiment. [Methods] The experiment set up 7 treatments with three times of repetition and designed by random grouping. By using 5 sampling points in each plot, and investigating continuous 4 holes of each point, total plants, diseased plants and disease degrees were recorded. Then disease index and control efficiency were calculated, and variance analysis was carried out. [Results] 300 or 450 ml/hm^2 azoxystrobin + difenoconazole 325 g/L SC had better control efficiency to rice sheath blight and had no phytotoxicity effect, we should use it at the initial disease stage and continuously spray 2-3 times. [Conclusion] The experiment provided a theoretical basis for controlling rice sheath blight using fungicides.
基金Supported by the Special Fund of International Plant Nutrition Institute Fund (NMS-Yunnan200801)~~
文摘[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion on productivity of sloping field was studied. [Result] The results showed that there was extremely significantly posi- tive correlation between the thicknesses of covered topsoil with either the yield of maize seeds or the yield of maize stalks, which indicated that the yields of maize seeds and maize stalks decreased extremely significantly with the increase of the amount of surface soil loss caused by erosion on the sloping field. The yields of maize seeds and maize stalks decreased by 29.62% and 24.46% respectively in the treatment with removal of a 15 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 17.31% and 20.14% re- spectively in the treatment with removal of a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 12.69% and 11.51% respectively in the treatment with removal of a 5 cm thick layer of ma- ture topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 10.00% and 9.35% respectively in the treatment with covering with a 5 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 15.77% and 16.19% respectively in the treatment with covering with a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 17.69% and 25.18% respectively in the treat- ment with covering with a 15 cm thick layer of mature topsoil in the plow layer. [Conclusion] This study provides a basis for assessing the effect of soil erosion on sloping field.
基金supported by the Special Fund for Agroscientific Research in the Public Interest (201203030 and 201003016)the National Basic Research Program of China (973 Program, 2011CB100501-S06)the National Natural Science Foundation of China (41301269)
文摘Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expansion in south China. A study was carried out to evaluate the relationship between the SOC content and organic carbon input under various organic amendments at a long-term fertilization experiment that was established on a red soil under a double rice cropping system in 1981. The treatments included non-fertilization (CK), nitrogen-phosphorus-potassium fertilization in early rice only (NPK), green manure (Astragalus sinicus L.) in early rice only (OM1), high rate of green manure in early rice only (OM2), combined green manure in early rice and farmyard manure in late rice (OM3), combined green manure in early rice, farmyard manure in late rice and rice straw mulching in winter (OM4), combined green manure in early rice and rice straw mulching in winter (OMS). Our data showed that the SOC content was the highest under OM3 and OM4, followed by OM1, OM2 and OM5, then NPK fertilization, and the lowest under non-fertilization. However, our analyses in SOC stock indicated a significant difference between OM3 (33.9 t ha^-1) and OM4 (31.8 t ha^-1), but no difference between NPK fertilization (27 t ha^-1) and nonfertilization (28.1 t ha^-1). There was a significant linear increase in SOC over time for all treatments, and the slop of linear equation was greater in organic manure treatments (0.276-0.344 g kg-1 yr^-1) than in chemical fertilizer (0.216 g kg^-1 yr^-1) and no fertilizer (0.127 g kg^-1 yr^-1).
文摘The content of organic matter (OM), nitrogen (N), phosphorus (P), and potassium (K) in the three selected soils, including Calcaric Purpli-Orthic Primosols (purple sand-shale parent material), Dystric Turbi-Anthric Primosols (quaternary red clay parent material) and Typic Udi-Sandic Primosols (granite parent material) were studied under a long-term experiment by using crop straw and inorganic fertilizers at the Hunan Red Soil Experiment Station of Chinese Academy of Agricultural Sciences. The results showed that the contents of OM, N, P and K in the three selected soils increased after 23 years application of crop straw and inorganic fertilizers, but the contents increased much less when crop straw or inorganic fertilizers was applied alone. The nutrient contents in the three soils developed from granite changed more remarkably than those in the soil derived from quaternary red clay and purple sand-shale. It was also found that the contents of OM, N, and P increased slightly in the treatments without applying fertilizers or returning the crop straw to the root bed. Combined application of inorganic fertilizers and crop straw could remarkably increase the contents of OM, alkalihydrolyzable N and available K, the positive correlation between application of organic fertilizers and increase of OM in soil did not always happened, it provided evidence for the relation between appropriate C/N ratio and accumulation of OM in soil. The increase of nutrient content was influenced by the soil properties. By comparing the contents of nutrient in 0-20 cm depth in the three different soils, it was concluded that the most increases of OM, alkali-hydrolyzable N, and available P were observed in Typic Udi-Sandic Primosols with the average increase by 3.03, 27.38, and 21.73 mg kg^-1, respectively. The available K increased in Dystric Turbi-Anthric Primosols with the average increase by 25.82 mg kg^-1, while it decreased in Calcaric Purpli-Orthic Primosols and Typic Udi-Sandic Primosols. It was concluded that the application of inorganic fertilizer and crop straw was important to improve the soil fertility for all of three selected soils. The straw return to the field had played a significant role for enhancement of the soil quality in the study areas. The application of inorganic fertilizer combined with the straw return to the fields could remarkably improve the soil fertility.
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
基金Supported by National Modern Agricultural Industrial Technology System(CARS-02-69)Major Agriculture Science Foundation of Upland Grain Crops Breeding of Zhejiang Province(2016C02050-9-1)Project for Training of Youth Talents of Zhejiang Academy of Agricultural Sciences(2015)
文摘To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.
基金National Natural Science Foundation of China(U22422203,42030610,41975138,41975046,42075086,42275008)the High-level Science and Technology Journals Projects of Guangdong Province(214040990009)+1 种基金National Key Research and Development Program of China under Grant(2017YFC1501701,2017YFC1501703)Science and Technology Foundation of CAMS(2020KJ021)。
文摘Aiming at the needs of mechanism analysis of rainstorms and development of numerical prediction models in south China, the Guangzhou Institute of Tropical and Marine Meteorology of China Meteorological Administration and the Chinese Academy of Meteorological Sciences jointly set up the Longmen Cloud Physics Field Experiment Base,China Meteorological Administration. This paper introduces the instruments and field experiments of this base, provides an overview of the recent advances in retrieval algorithms of microphysical parameters, improved understanding of microphysical characteristics, as well as the formation mechanisms and numerical prediction of heavy rainfalls in south China based on the field experiments dataset.
基金sponsored by The National Natural Science Foundation of China(Grant Nos.51939004 and 51279090)The National Key Research and Development Program of China(2017YFC1501100)the Hubei Key Laboratory of Construction and Management in Hydropower Engineering(2020KSD11).
文摘Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments.However,whether a slope can actually seal pore air continues to be debated by researchers.In this study,a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope,and a field experiment is conducted to realistically test the sealing conditions of a slope.According to the numerical simulation,the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the“inhalation zone”and“overflow zone”,respectively.Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level,and it causes pore air pressure to reach the cm level.A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration.Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process.The monitoring results show that the pore air pressure in the slope changed,which indicates that the slope can seal air.Moreover,the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall,which agrees well with the numerical simulation results.
基金supported by the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201106049)the National Natural Science Foundation of China(Grant Nos.51538005 and 41375014)the Jiangsu Collaborative Innovation Center for Climate Change,China
文摘The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL(Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data(Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier–Stokes equations, and can produce very high-resolution(1–5 m) wind fields of a complex neighborhood scale urban building canopy(~ 1 km ×1km) in less than 3 min when run on a personal computer.
基金funded by the National Basic Research Program of China(2014CB954200)the National Natural Science Foundation of China(41425007,41005001)the National Gray Desert Soil Fertility and Fertilizer Efficiency Monitoring Station of China
文摘A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon (SOC) from 1990 to 2012 with seven fertilization treatments. The seven treatments included an unfertilized control (CK) and six different combinations of phosphorus (P), potassium (K), nitrogen (N), straw (S) and animal manure (M). The balanced fertilization treatments had significantly (P〈0.05) higher average yields than the unbalanced ones. The treatment with 2/3 N from potassium sulfate (NPK) and 1/3 N from farmyard manure (NPKM) had a higher average yield than the other treatments. The average yields (over the 23 years) in the treatments of NPK, and urea, calcium superphosphate (NP) did not differ significantly (P〉0.05) but were higher than that in the treatment with urea and potassium sulfate (NK; P〈0.05). The results also show that the highest increases in SOC (P〈0.05) occurred in NPKM with a potential increase of 1.2 t C/(hm2.a). The increase in SOC was only 0.31, 0.30 and 0.12 t C/(hm2.a) for NPKS (9/10 N from NPK and 1/10 N from straw), NPK and NP, respectively; and the SOC in the NP, NK and CK treatments were approaching equilibrium and so did not rise or fall significantly over the 23-year experiment. A complete NPK plus manure fertilization program is recommended for this extremely arid region to maximize both yields and carbon sequestration.
文摘Sequestration of carbon dioxide(CO<sub>2</sub>) in deep, unminable coalseam is an innovative technology, because it can not only reduce greenhouse gas in the atmosphere,but also enhance coalbed methane recovery(CO<sub>2</sub>-ECBM).Lots of research have been carried out on this topic in recent years.However,few of them were focused on the comparison of the
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.
文摘Seven ground cucumber varieties were cultivated in open field for the comparative experiment. The results showed that Texuan cucumber and Yantai ground cucumber had good commodity characters,good taste and high yield,and their output value exceeded 16 000 yuan/666. 7 m2,so they are more suitable for open cultivation in Yantai region. The next ones are Meiyu Diguawang and Aweishi ground cucumber.