本文介绍了一种基于最大公共子串(Longest Common Substring,LCS)算法的术语抽取方法:按标点符号对领域文档进行切分;抽取切分后的语句片断的所有最大公共子串作为候选术语集;通过停用词过滤、对照领域词筛选和术语嵌套子串筛选等规...本文介绍了一种基于最大公共子串(Longest Common Substring,LCS)算法的术语抽取方法:按标点符号对领域文档进行切分;抽取切分后的语句片断的所有最大公共子串作为候选术语集;通过停用词过滤、对照领域词筛选和术语嵌套子串筛选等规则进行判别,得到最终的术语集。通过学前教育领域术语抽取的实验,验证了该算法可以有效地抽取中文领域术语:术语抽取平均准确率达84.2%;4~6字符双词术语抽取的效果尤佳,准确率接近100%。展开更多
数据流相似性查询广泛应用于智能家居、环境监测等领域.当前以LCSS(longest common subsequence)作为相似性测度函数的研究并不多.NAIVE算法使用基本动态规划方法计算测度函数值,通过该值与相似阈值的比较得到查询结果,对基于LCSS的数...数据流相似性查询广泛应用于智能家居、环境监测等领域.当前以LCSS(longest common subsequence)作为相似性测度函数的研究并不多.NAIVE算法使用基本动态规划方法计算测度函数值,通过该值与相似阈值的比较得到查询结果,对基于LCSS的数据流相似性查询问题进行研究.针对NAIVE算法必须在动态规划矩阵所有成员取值的计算完成后才能得到查询结果的缺点,提出了一种基于PS(possible solution)-CC(column critical)域优化策略的数据流相似性查询处理算法.该算法划定了每个窗口上动态规划矩阵的PS域和CC域,很好地利用了这2个域中成员所具有的性质和相似性查询的特点,无须获得测度函数的最终值便可得到查询结果,省略了很多矩阵成员的计算.实验部分证明了该算法的有效性,与同类算法相比,在处理具有更高精度结果要求的查询时效果更好.展开更多
针对当前动作识别过程中忽略了场景的语义信息,易受视角变换与遮挡的影响,导致识别率不高等问题,提出了一种基于动态时间规整耦合3D运动历史图像的人体动作识别算法。首先,结合人体的空间位置、运动方向和速度等不同特征,利用多维最长...针对当前动作识别过程中忽略了场景的语义信息,易受视角变换与遮挡的影响,导致识别率不高等问题,提出了一种基于动态时间规整耦合3D运动历史图像的人体动作识别算法。首先,结合人体的空间位置、运动方向和速度等不同特征,利用多维最长公共子序列(Multi-Dimensional Longest Common Subsequence,MDLCS),对视频数据中的行人目标进行跟踪,提取目标的运动轨迹。然后,基于频谱映射理论,对得到的轨迹实施聚类,并计算运动轨迹的聚类中心。通过对聚类结果执行ROI划分和提取,获取场景的语义上下文信息。再引入动态时间规整(Dynamic Time Warping,DTW),将输入的视频序列与聚类中心进行比较,消除异常与冗余动作信息。随后,计算轨迹段的起点、终点与工作区的ROI之间的位置关系,结合场景的语义上下文信息,采用基于颜色和深度信息的3D运动历史图像(3D Motion History Image,3D-MHI)来提取动作特征。最后,利用支持向量机(Support Vector Machine,SVM)对3D-MHI动作特征进行分类学习,完成对人体动作的识别。实验表明:所提算法在UCF Sport与Hollywood数据集上的识别率分别达到了95.1%和92.5%,与当前流行的动作识别算法比较,具有更高的识别率与较强的鲁棒性,对视角变换与遮挡等复杂场景下的动作识别更为有效。展开更多
为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进...为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。展开更多
文摘本文介绍了一种基于最大公共子串(Longest Common Substring,LCS)算法的术语抽取方法:按标点符号对领域文档进行切分;抽取切分后的语句片断的所有最大公共子串作为候选术语集;通过停用词过滤、对照领域词筛选和术语嵌套子串筛选等规则进行判别,得到最终的术语集。通过学前教育领域术语抽取的实验,验证了该算法可以有效地抽取中文领域术语:术语抽取平均准确率达84.2%;4~6字符双词术语抽取的效果尤佳,准确率接近100%。
文摘数据流相似性查询广泛应用于智能家居、环境监测等领域.当前以LCSS(longest common subsequence)作为相似性测度函数的研究并不多.NAIVE算法使用基本动态规划方法计算测度函数值,通过该值与相似阈值的比较得到查询结果,对基于LCSS的数据流相似性查询问题进行研究.针对NAIVE算法必须在动态规划矩阵所有成员取值的计算完成后才能得到查询结果的缺点,提出了一种基于PS(possible solution)-CC(column critical)域优化策略的数据流相似性查询处理算法.该算法划定了每个窗口上动态规划矩阵的PS域和CC域,很好地利用了这2个域中成员所具有的性质和相似性查询的特点,无须获得测度函数的最终值便可得到查询结果,省略了很多矩阵成员的计算.实验部分证明了该算法的有效性,与同类算法相比,在处理具有更高精度结果要求的查询时效果更好.
文摘针对当前动作识别过程中忽略了场景的语义信息,易受视角变换与遮挡的影响,导致识别率不高等问题,提出了一种基于动态时间规整耦合3D运动历史图像的人体动作识别算法。首先,结合人体的空间位置、运动方向和速度等不同特征,利用多维最长公共子序列(Multi-Dimensional Longest Common Subsequence,MDLCS),对视频数据中的行人目标进行跟踪,提取目标的运动轨迹。然后,基于频谱映射理论,对得到的轨迹实施聚类,并计算运动轨迹的聚类中心。通过对聚类结果执行ROI划分和提取,获取场景的语义上下文信息。再引入动态时间规整(Dynamic Time Warping,DTW),将输入的视频序列与聚类中心进行比较,消除异常与冗余动作信息。随后,计算轨迹段的起点、终点与工作区的ROI之间的位置关系,结合场景的语义上下文信息,采用基于颜色和深度信息的3D运动历史图像(3D Motion History Image,3D-MHI)来提取动作特征。最后,利用支持向量机(Support Vector Machine,SVM)对3D-MHI动作特征进行分类学习,完成对人体动作的识别。实验表明:所提算法在UCF Sport与Hollywood数据集上的识别率分别达到了95.1%和92.5%,与当前流行的动作识别算法比较,具有更高的识别率与较强的鲁棒性,对视角变换与遮挡等复杂场景下的动作识别更为有效。
文摘为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。