The Longgang volcanic cluster located in Jilin Province belongs to one of the active volcanic regions in northeast China, and has been active in modern times. In view of the multiple eruptions in history, it is very i...The Longgang volcanic cluster located in Jilin Province belongs to one of the active volcanic regions in northeast China, and has been active in modern times. In view of the multiple eruptions in history, it is very important to determine the age of each eruption for evaluating the volcanic hazards. Two alkaline basalt samples taken from Dayizishan and Diaoshuihu were analyzed with the U-series component dating after magnetic separation. The ages of the two samples are (71±9) ka and (106±13) ka B.P., respectively. These data indicate that there existed intensive eruption activities during the late Pleistocene.展开更多
Although geothermal energy has many clear advantages,including its sustainability and environmentally friendly nature,research into potential geothermal resources across the Longgang Block,Northeast China,has been lim...Although geothermal energy has many clear advantages,including its sustainability and environmentally friendly nature,research into potential geothermal resources across the Longgang Block,Northeast China,has been limited.Here we present the first analysis of the potential geothermal resources in this region that employs joint geological and non-seismic geophysical methods to identify target areas that may be economically viable.We acquire and analyze high-precision gravity,magnetic,and magnetotelluric sounding data,which are constrained using the petrophysical parameters of outcropping rocks across the Longgang Block,to conduct a comprehensive evaluation of the region’s deep geological structures and their geothermal resources potential,with a focus on identifying faults,rock masses,and thermal storage structures.We find that Archean granitic gneiss and Mesozoic rock masses in the deeper section of the Longgang Block possess weak gravity anomalies and high resistivities.We also identify thermal storage structures near these deeper geological units based on their extremely low resistivities.The data are used to infer the dip and depth of known or hidden faults,to constrain the spatial distribution of intrusive rock masses,and to determine the spatial distribution of subsurface thermal storage structures.The potential of the target areas for geothermal resources exploitation is divided into three grades based on contact depths between faults and thermal storage structures,and the scale of their thermal storage structures.Our results suggest that a joint non-seismic geophysical approach can be effective in locating and evaluating geothermal resources in complex geological settings.展开更多
In this paper,status quo of water pollution control in the Longgang River Basin is summarized,and the current status of water environment quality is analyzed,and the main problems in water environment management are d...In this paper,status quo of water pollution control in the Longgang River Basin is summarized,and the current status of water environment quality is analyzed,and the main problems in water environment management are discussed.The research aims to provide reference for the management of the Longgang River basin.展开更多
The Dayizishan scoria cone and Jinlongdingzi scoria cone in the Longgang volcanic swarm, northeastern China are comprised of basaltic fallout tephra that derived from sub-Plinian eruptions. The airborn tephra formed a...The Dayizishan scoria cone and Jinlongdingzi scoria cone in the Longgang volcanic swarm, northeastern China are comprised of basaltic fallout tephra that derived from sub-Plinian eruptions. The airborn tephra formed a scoria cone and tephra sheets in geomorphological character. The fallout tephra deposits consist of basaltic scoria, bomb, ultramafic xenolith and lithic fragments. The tephra deposits in the tephra sheets developed plane parallel bedding and graded bedding. The size parameters of tephra changed with distance away from source and the lapse of time regularly. The Dalongwan tuff ring and Longquanlongwan tuff ring in Longgang volcanic swarm are comprised of base surge deposits, formed by phreatomagmatic explosions. The base surge deposits are composed of basaltic lapilli, pisolites and tuff. The sedimentary structure, for instance, dunelike structure, chute and pool structure, U-shaped channel and cross bedding, massive beds and sandwave beds etc. are recognized.展开更多
Tephra fallout is an important type of hazard caused by explosive volcanic eruption, and numerical simulation has become a fast and effective approach to assess the dispersion and deposition of tephra fallout. Accordi...Tephra fallout is an important type of hazard caused by explosive volcanic eruption, and numerical simulation has become a fast and effective approach to assess the dispersion and deposition of tephra fallout. According to the improved 2D diffusion model of Suzuki ( 1983), we edited a tephra diffusion program that can run in the Windows system. Based on previous data, we simulated the diffusion scope of the Jinlongdingzi volcanic eruption, which is the latest eruption in the Longgang volcanic cluster. The simulated results are in good agreement with the results from measurement in situ, indicating that the model is reliable and the parameters used in the model are suitable. By using wind profiles of ten years, 7, 021 simulations under different wind profiles were carried out, and then probabilistic hazard maps of tephra fallout were constructed for tephra thickness thresholds, lcm and 0.5cm. This study can provide an important scientific basis for volcanic hazard analysis, risk mitigation plans and countermeasures in the Longgang volcanic area.展开更多
Studies on organic geochemistry indicate that the origin, type and maturity of organic matter are different among coal-bearing, copper-bearing and evaporite formations in the Mesozoic continental Chuxiong Basin, Yunna...Studies on organic geochemistry indicate that the origin, type and maturity of organic matter are different among coal-bearing, copper-bearing and evaporite formations in the Mesozoic continental Chuxiong Basin, Yunnan, China. A mechanism has been proposed that (1) during the diagenetic mineralization stage the short-chain organic acids dervied from kerogen played an important role in remobilizing copper from source beds, while oils acted as important carrier of copper, and that (2) during the transformation or remolding mineralization stage, meteoric water leached the evaporite layers and formed downward-percolating oxidizing SO42-rich fluids; meanwhile, the copper-bearing fluids migrating upwards along growth faults from the basement was contaminated by the coal-bearing series on the way and formed reducing organic-rich fluids; oxidation-reduction occurred and sulfides formed when the two kinds of fluids met within sandstones.展开更多
Chuxiong Basin in Yunnan is a typical Mesozoic foreland basin which is enriched in widely distributed Triassic coal resources with thick deposits and of important strategic significance. By applying vitrinite reflecta...Chuxiong Basin in Yunnan is a typical Mesozoic foreland basin which is enriched in widely distributed Triassic coal resources with thick deposits and of important strategic significance. By applying vitrinite reflectance measurement, inclusion thermometry, fission track dating and EASY% Ro numerical simulation, the Triassic coal thermal evolution history of the Chuxiong Basin was analyzed, and the results were concluded. The vitrinite reflectance of Chuxiong Basin is higher in the west and south in general.Vertically, in the east, west, and north of the basin, the vitrinite reflectance increases with increasing depth, and in the northern part, exceptionally high values occur, and there is no significant regularity in the east. The formation of inclusions inside quartz veins in Chuxiong Basin Triassic coal are unrelated with magmatic hydrothermal fluid, and there are multi-phase inclusions formed in three or four sections of tectonic movements. The main heating period(apparent age) of the Triassic coal is concentrated in the late Cenozoic, during which the coal was subjected to repeated thermal disturbance, resulting in a multimodal distribution of the fission track data, which reveals mild burial features of the early stages of the Late Cenozoic. The Triassic coal of Chuxiong Basin has experienced two major temperature increasing processes, which occurred in the early-mid Yanshan and the early Himalayan, respectively. The first hydrocarbon generation period of coal organic matter occurred in the formation stage of the foreland basin, during which the south and west of the basin generated large amounts of hydrocarbon, but little was preserved. The second generation stage in the Early Himalayan had conditions suitable for high gas accumulation, especially in the western and southern regions. The upper Triassic coal is of moderate burial depth and is less affected by the strike-slip effect. There are key areas of Chuxiong Basin oil and gas exploration, such as the Yanfeng Basin in the north-central, Yongren and Yunlong areas.展开更多
The Jinlongdingzi active volcano erupted before 1600a, and it is the latest basaltic explosive volcano at Longgang Volcano. Its volcanic products include the Jinlongdingzi volcanic cone (elevation 999.4m), the lava fl...The Jinlongdingzi active volcano erupted before 1600a, and it is the latest basaltic explosive volcano at Longgang Volcano. Its volcanic products include the Jinlongdingzi volcanic cone (elevation 999.4m), the lava flow and the widely\|spread volcanic pyroclastic sheet (Sihai Pyroclastic Sheet). Jinlongdingzi volcanic rocks are trachybasalts with very similar REE patterns and incompatible element patterns, and their \{\{\}\+\{87\}Sr\}/\{\{\}\+\{86\}Sr\} and \{\{\}\+\{143\}Nd\}/\{\{\}\+\{144\}Nd\} ratios range from \{0.704846\} to \{0.704921\} and from \{0.512619\} to \{0.512646\}, respectively. It is revealed that the trachybasalt has the character of primary magma derived directly from mantle sources with very little evolution and crust contamination during its ascending. The younger mantle xenoliths demonstrate that the mantle source of the Jinlongdingzi Volcano is hydrous, with relatively low temperature.展开更多
In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use tele...In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.展开更多
The research reviewed connotation, characteristics and significance of urban-rural eco-village and concluded approaches to eco-village planning from site selection, function division, environment and product selection...The research reviewed connotation, characteristics and significance of urban-rural eco-village and concluded approaches to eco-village planning from site selection, function division, environment and product selection. Finally, a case study of Hongbao Hundred-fruit Eco-village was introduced.展开更多
The impact of recessive calamities was analyzed,including seasonal drought,cold injury,dry hot wind and aphid in the wheat production of Chuxiong Prefecture,and the countermeasures that prevented and controlled the re...The impact of recessive calamities was analyzed,including seasonal drought,cold injury,dry hot wind and aphid in the wheat production of Chuxiong Prefecture,and the countermeasures that prevented and controlled the recessive calamities in a target-oriented way were proposed,including the improvement of basic farmland,the application of organic manure,the promotion of the breed with high stress resistance,the seedling at suitable date,the improvement of control on fertilizing and watering,the enhancement of management on cultivating and controlling disease in time,and the breeding new variety adaptive to local ecosystem,in order to advance the wheat production in a sustainable way.展开更多
In this paper,according to the results of the satellite imagery interpretation and field investigation,we study the active features and the latest active times of the ChuxiongNanhua fault,the Quaternary basins formati...In this paper,according to the results of the satellite imagery interpretation and field investigation,we study the active features and the latest active times of the ChuxiongNanhua fault,the Quaternary basins formation mechanism,and the relationship between the fault and the 1680 Chuxiong M_S6 3/4earthquake. Several Quaternary profiles at Lvhe,Nanhua reveal that the fault has offset the late Pleistocene deposits of the T2 and T3 terraces of Longchuan river, indicating that the fault was obviously active in late Quaternary. The Chuxiong-Nanhua fault has been dominated by dextral strike slip motion in the late Quaternary,with an average rate of 1. 6-2. 0 mm/a. Several pull apart Quaternary basins of Chuxiong,Nanhua,and Ziwu etc. have developed along the fault.The 1680 Chuxiong M_S6 3/4earthquake and several moderate earthquakes have occurred near the fault. The Chuxiong-Nanhua fault are the seismogenic structure of those earthquakes,the latest fault movement was in the late-Pleistocene,and even the Holocene.In large area,the Chuxiong-Nanhua fault and the eastern Qujiang fault and the Shiping fault composed a set of NW-trending oblique orientation active faults,and the motion characteristics are all mainly dextral strike slip. The motion characteristics,like the red river fault of the Sichuan-Yunnan Rhombic Block southwestern boundary,are concerned with the escaping movement of the Sichuan-Yunnan Rhombic Block.展开更多
As a typical kind of lithologic reservoirs,reef reservoirs are generally featured by their large single-well reservoir thickness,good reservoir physical properties,and high gas well productivity.The Upper Permian Chan...As a typical kind of lithologic reservoirs,reef reservoirs are generally featured by their large single-well reservoir thickness,good reservoir physical properties,and high gas well productivity.The Upper Permian Changxing Formation is an important natural gas exploration target in the Sichuan Basin,which hosts a large reef gas reservoir and is mainly distributed along the Kaijiang-Liangping Trough.Comprehensive analyses are implemented to investigate reservoir characteristics and identify controlling factors of reef reservoirs in Changxing Formation in the Eastern Longgang Area,Northeastern Sichuan Basin,including core,logging,and seismic data analyses.Changxing Formation reservoirs in the study area mainly occur in the reef-shoal complex,which are featured by wide distribution,large thickness and generally good physical properties.Reservoir rocks are dominantly composed of bioclastic dolomite and silty-fine dolomite(with grain phantom structure),while the main reservoir space consists of residual intergranular pores,intergranular dissolution pores,and karst vugs.In the seismic profiles,typical mound-shaped chaotic reflections can be clearly seen.It is suggested by the main reservoir development controlling factor analysis that the distributions of reef reservoirs are typically controlled by sedimentary facies belts,while the scale of the reef-shoal complex is determined by the pene-sedimentary micro-paleo-geomorphology.Dolomitization can not only significantly preserve the primary pores but also enhance the permeability of rocks.Moreover,karstification is the key to high-quality reef-shoal reservoirs.展开更多
The sandstone-type Cu deposits in the Chuxiong Basin occur in the Cretaceous Gaofengsi Formation and the Maotoushan Formation and the orebodies are stratoid and lenticular in form, structurally controlled by their str...The sandstone-type Cu deposits in the Chuxiong Basin occur in the Cretaceous Gaofengsi Formation and the Maotoushan Formation and the orebodies are stratoid and lenticular in form, structurally controlled by their stratigraphical position. Ore structures are dominated by impregnated and striped ones. In addition, it has been observed that copper mineralization is controlled by water-discharge and deformation structures. Orebodies are commonly seen on the gently inclined limbs of the anticline, with the involution front. Copper mineralization shows a distinct zonation. S, Pb isotope and REE data suggest that the copper would stem from the country rocks and the sulfur largely from the lower strata. During diagenesis oxidized Cu-bearing brines derived from the upper parts and reduced brines from the lower parts are involved in metallogenetic reactions in the stress neutral plane, which is the key to the formation of copper deposits in the Chuxiong Basin.展开更多
The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was infl...The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was influenced by Paleoproterozoic magmatism-metamorphism.The authors provide a comprehensive analysis of amphibolite in Laojinchang area,southern Jilin Province,through petrographic,geochemical,mineralogical,and zircon dating.The main findings are as follows:The mineral assemblage of amphibolite is Hb+Pl+Cpx+Bi+Kf+Q,characteristic of amphibolite facies;zircon U-Pb dating indicates that the metamorphic age of amphibolite is 1834±33 Ma;the amphibolite has geochemical characteristics of calcium alkaline,with depletion of Nb,Ta,Ti and P.The plagioclase in the amphibolite is oligoclase,belonging to acidic plagioclase.It is speculated that the protolith of the amphibolite is diorite;using geothermobarometer,the peak metamorphic P-T conditions of amphibolite are determined to be 536–593℃/3.4–5.0 kbar,and the post-peak conditions are 429–566℃/1.3–3.1 kbar.The above results indicate that the Paleoproterozoic metamorphism has been superimposed on Longgang Block,linked to a new orogenic event on the northern edge of North China Craton.展开更多
文摘The Longgang volcanic cluster located in Jilin Province belongs to one of the active volcanic regions in northeast China, and has been active in modern times. In view of the multiple eruptions in history, it is very important to determine the age of each eruption for evaluating the volcanic hazards. Two alkaline basalt samples taken from Dayizishan and Diaoshuihu were analyzed with the U-series component dating after magnetic separation. The ages of the two samples are (71±9) ka and (106±13) ka B.P., respectively. These data indicate that there existed intensive eruption activities during the late Pleistocene.
基金jointly supported by the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences (Award Number J1901-16)the project of graduate education and teaching reform in Shanxi Province (Award Number 2021YJJG147)+4 种基金the teaching reform project “Geographic Modeling, Simulation and Visualization” established by Shanxi Normal University (Award Number 2019JGXM-39)the “Deep Geological Survey in Benxi-Linjiang Area”, a pilot project set up by the China Geological Survey, China (grant number 1212011220247)“The Research Start-up Fund of Shanxi Normal University for Dr. Peng Chong in 2016” (Award Number 0505/ 02070438)“The Research Start-up Fund of Shanxi Normal University for Dr. Liu Haiyan in 2017” (Award Number 0505/02070458)“The Research Fund for Outstanding Doctor in 2017” (Award Number 0503/02010168), established by the Education Department of Shanxi Province for Dr. Liu Haiyan
文摘Although geothermal energy has many clear advantages,including its sustainability and environmentally friendly nature,research into potential geothermal resources across the Longgang Block,Northeast China,has been limited.Here we present the first analysis of the potential geothermal resources in this region that employs joint geological and non-seismic geophysical methods to identify target areas that may be economically viable.We acquire and analyze high-precision gravity,magnetic,and magnetotelluric sounding data,which are constrained using the petrophysical parameters of outcropping rocks across the Longgang Block,to conduct a comprehensive evaluation of the region’s deep geological structures and their geothermal resources potential,with a focus on identifying faults,rock masses,and thermal storage structures.We find that Archean granitic gneiss and Mesozoic rock masses in the deeper section of the Longgang Block possess weak gravity anomalies and high resistivities.We also identify thermal storage structures near these deeper geological units based on their extremely low resistivities.The data are used to infer the dip and depth of known or hidden faults,to constrain the spatial distribution of intrusive rock masses,and to determine the spatial distribution of subsurface thermal storage structures.The potential of the target areas for geothermal resources exploitation is divided into three grades based on contact depths between faults and thermal storage structures,and the scale of their thermal storage structures.Our results suggest that a joint non-seismic geophysical approach can be effective in locating and evaluating geothermal resources in complex geological settings.
文摘In this paper,status quo of water pollution control in the Longgang River Basin is summarized,and the current status of water environment quality is analyzed,and the main problems in water environment management are discussed.The research aims to provide reference for the management of the Longgang River basin.
文摘The Dayizishan scoria cone and Jinlongdingzi scoria cone in the Longgang volcanic swarm, northeastern China are comprised of basaltic fallout tephra that derived from sub-Plinian eruptions. The airborn tephra formed a scoria cone and tephra sheets in geomorphological character. The fallout tephra deposits consist of basaltic scoria, bomb, ultramafic xenolith and lithic fragments. The tephra deposits in the tephra sheets developed plane parallel bedding and graded bedding. The size parameters of tephra changed with distance away from source and the lapse of time regularly. The Dalongwan tuff ring and Longquanlongwan tuff ring in Longgang volcanic swarm are comprised of base surge deposits, formed by phreatomagmatic explosions. The base surge deposits are composed of basaltic lapilli, pisolites and tuff. The sedimentary structure, for instance, dunelike structure, chute and pool structure, U-shaped channel and cross bedding, massive beds and sandwave beds etc. are recognized.
基金unded by the National Natural Science Foundation Project(40972209)the Special Projects for China Earthquake Research(201208005)
文摘Tephra fallout is an important type of hazard caused by explosive volcanic eruption, and numerical simulation has become a fast and effective approach to assess the dispersion and deposition of tephra fallout. According to the improved 2D diffusion model of Suzuki ( 1983), we edited a tephra diffusion program that can run in the Windows system. Based on previous data, we simulated the diffusion scope of the Jinlongdingzi volcanic eruption, which is the latest eruption in the Longgang volcanic cluster. The simulated results are in good agreement with the results from measurement in situ, indicating that the model is reliable and the parameters used in the model are suitable. By using wind profiles of ten years, 7, 021 simulations under different wind profiles were carried out, and then probabilistic hazard maps of tephra fallout were constructed for tephra thickness thresholds, lcm and 0.5cm. This study can provide an important scientific basis for volcanic hazard analysis, risk mitigation plans and countermeasures in the Longgang volcanic area.
基金This study represents the research result of he project supported jointly by the National Natural Science Foundation of China (No. 49173168)the State Key Laboratory of Organic Geochemistry, Chinese Academy of Sciences (OGL-9213)
文摘Studies on organic geochemistry indicate that the origin, type and maturity of organic matter are different among coal-bearing, copper-bearing and evaporite formations in the Mesozoic continental Chuxiong Basin, Yunnan, China. A mechanism has been proposed that (1) during the diagenetic mineralization stage the short-chain organic acids dervied from kerogen played an important role in remobilizing copper from source beds, while oils acted as important carrier of copper, and that (2) during the transformation or remolding mineralization stage, meteoric water leached the evaporite layers and formed downward-percolating oxidizing SO42-rich fluids; meanwhile, the copper-bearing fluids migrating upwards along growth faults from the basement was contaminated by the coal-bearing series on the way and formed reducing organic-rich fluids; oxidation-reduction occurred and sulfides formed when the two kinds of fluids met within sandstones.
基金support of the Fundamental Research Funds for the Central Universities (No. 2015XKZD07) of Chinathe Foundation Research Project of Jiangsu province (Youth Fund Project) of China (No. BK20150179)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)
文摘Chuxiong Basin in Yunnan is a typical Mesozoic foreland basin which is enriched in widely distributed Triassic coal resources with thick deposits and of important strategic significance. By applying vitrinite reflectance measurement, inclusion thermometry, fission track dating and EASY% Ro numerical simulation, the Triassic coal thermal evolution history of the Chuxiong Basin was analyzed, and the results were concluded. The vitrinite reflectance of Chuxiong Basin is higher in the west and south in general.Vertically, in the east, west, and north of the basin, the vitrinite reflectance increases with increasing depth, and in the northern part, exceptionally high values occur, and there is no significant regularity in the east. The formation of inclusions inside quartz veins in Chuxiong Basin Triassic coal are unrelated with magmatic hydrothermal fluid, and there are multi-phase inclusions formed in three or four sections of tectonic movements. The main heating period(apparent age) of the Triassic coal is concentrated in the late Cenozoic, during which the coal was subjected to repeated thermal disturbance, resulting in a multimodal distribution of the fission track data, which reveals mild burial features of the early stages of the Late Cenozoic. The Triassic coal of Chuxiong Basin has experienced two major temperature increasing processes, which occurred in the early-mid Yanshan and the early Himalayan, respectively. The first hydrocarbon generation period of coal organic matter occurred in the formation stage of the foreland basin, during which the south and west of the basin generated large amounts of hydrocarbon, but little was preserved. The second generation stage in the Early Himalayan had conditions suitable for high gas accumulation, especially in the western and southern regions. The upper Triassic coal is of moderate burial depth and is less affected by the strike-slip effect. There are key areas of Chuxiong Basin oil and gas exploration, such as the Yanfeng Basin in the north-central, Yongren and Yunlong areas.
文摘The Jinlongdingzi active volcano erupted before 1600a, and it is the latest basaltic explosive volcano at Longgang Volcano. Its volcanic products include the Jinlongdingzi volcanic cone (elevation 999.4m), the lava flow and the widely\|spread volcanic pyroclastic sheet (Sihai Pyroclastic Sheet). Jinlongdingzi volcanic rocks are trachybasalts with very similar REE patterns and incompatible element patterns, and their \{\{\}\+\{87\}Sr\}/\{\{\}\+\{86\}Sr\} and \{\{\}\+\{143\}Nd\}/\{\{\}\+\{144\}Nd\} ratios range from \{0.704846\} to \{0.704921\} and from \{0.512619\} to \{0.512646\}, respectively. It is revealed that the trachybasalt has the character of primary magma derived directly from mantle sources with very little evolution and crust contamination during its ascending. The younger mantle xenoliths demonstrate that the mantle source of the Jinlongdingzi Volcano is hydrous, with relatively low temperature.
基金supported by the National Natural Science Foundation of China (Project 41730212)the Basic Research Project of the Institute of Earthquake Forecasting, China Earthquake Administration (2017IES0102)
文摘In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.
文摘The research reviewed connotation, characteristics and significance of urban-rural eco-village and concluded approaches to eco-village planning from site selection, function division, environment and product selection. Finally, a case study of Hongbao Hundred-fruit Eco-village was introduced.
基金Supported by Chinese Modern Agriculture Industrial Technology Construction Program(CARS-3)
文摘The impact of recessive calamities was analyzed,including seasonal drought,cold injury,dry hot wind and aphid in the wheat production of Chuxiong Prefecture,and the countermeasures that prevented and controlled the recessive calamities in a target-oriented way were proposed,including the improvement of basic farmland,the application of organic manure,the promotion of the breed with high stress resistance,the seedling at suitable date,the improvement of control on fertilizing and watering,the enhancement of management on cultivating and controlling disease in time,and the breeding new variety adaptive to local ecosystem,in order to advance the wheat production in a sustainable way.
基金funded by the Spark Program of Earthquake Technology of CEA(XH14047)the Natural Science Foundation of China(41472204)
文摘In this paper,according to the results of the satellite imagery interpretation and field investigation,we study the active features and the latest active times of the ChuxiongNanhua fault,the Quaternary basins formation mechanism,and the relationship between the fault and the 1680 Chuxiong M_S6 3/4earthquake. Several Quaternary profiles at Lvhe,Nanhua reveal that the fault has offset the late Pleistocene deposits of the T2 and T3 terraces of Longchuan river, indicating that the fault was obviously active in late Quaternary. The Chuxiong-Nanhua fault has been dominated by dextral strike slip motion in the late Quaternary,with an average rate of 1. 6-2. 0 mm/a. Several pull apart Quaternary basins of Chuxiong,Nanhua,and Ziwu etc. have developed along the fault.The 1680 Chuxiong M_S6 3/4earthquake and several moderate earthquakes have occurred near the fault. The Chuxiong-Nanhua fault are the seismogenic structure of those earthquakes,the latest fault movement was in the late-Pleistocene,and even the Holocene.In large area,the Chuxiong-Nanhua fault and the eastern Qujiang fault and the Shiping fault composed a set of NW-trending oblique orientation active faults,and the motion characteristics are all mainly dextral strike slip. The motion characteristics,like the red river fault of the Sichuan-Yunnan Rhombic Block southwestern boundary,are concerned with the escaping movement of the Sichuan-Yunnan Rhombic Block.
基金The current study is supported by the National Natural Science Foundation of China(41602166)and China Petroleum Science and Technology Innovation Fund Project(2015D-5006-0107).
文摘As a typical kind of lithologic reservoirs,reef reservoirs are generally featured by their large single-well reservoir thickness,good reservoir physical properties,and high gas well productivity.The Upper Permian Changxing Formation is an important natural gas exploration target in the Sichuan Basin,which hosts a large reef gas reservoir and is mainly distributed along the Kaijiang-Liangping Trough.Comprehensive analyses are implemented to investigate reservoir characteristics and identify controlling factors of reef reservoirs in Changxing Formation in the Eastern Longgang Area,Northeastern Sichuan Basin,including core,logging,and seismic data analyses.Changxing Formation reservoirs in the study area mainly occur in the reef-shoal complex,which are featured by wide distribution,large thickness and generally good physical properties.Reservoir rocks are dominantly composed of bioclastic dolomite and silty-fine dolomite(with grain phantom structure),while the main reservoir space consists of residual intergranular pores,intergranular dissolution pores,and karst vugs.In the seismic profiles,typical mound-shaped chaotic reflections can be clearly seen.It is suggested by the main reservoir development controlling factor analysis that the distributions of reef reservoirs are typically controlled by sedimentary facies belts,while the scale of the reef-shoal complex is determined by the pene-sedimentary micro-paleo-geomorphology.Dolomitization can not only significantly preserve the primary pores but also enhance the permeability of rocks.Moreover,karstification is the key to high-quality reef-shoal reservoirs.
文摘The sandstone-type Cu deposits in the Chuxiong Basin occur in the Cretaceous Gaofengsi Formation and the Maotoushan Formation and the orebodies are stratoid and lenticular in form, structurally controlled by their stratigraphical position. Ore structures are dominated by impregnated and striped ones. In addition, it has been observed that copper mineralization is controlled by water-discharge and deformation structures. Orebodies are commonly seen on the gently inclined limbs of the anticline, with the involution front. Copper mineralization shows a distinct zonation. S, Pb isotope and REE data suggest that the copper would stem from the country rocks and the sulfur largely from the lower strata. During diagenesis oxidized Cu-bearing brines derived from the upper parts and reduced brines from the lower parts are involved in metallogenetic reactions in the stress neutral plane, which is the key to the formation of copper deposits in the Chuxiong Basin.
基金Supported by projects of the National Natural Science Foundation of China(Nos.42172213,42372255).
文摘The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was influenced by Paleoproterozoic magmatism-metamorphism.The authors provide a comprehensive analysis of amphibolite in Laojinchang area,southern Jilin Province,through petrographic,geochemical,mineralogical,and zircon dating.The main findings are as follows:The mineral assemblage of amphibolite is Hb+Pl+Cpx+Bi+Kf+Q,characteristic of amphibolite facies;zircon U-Pb dating indicates that the metamorphic age of amphibolite is 1834±33 Ma;the amphibolite has geochemical characteristics of calcium alkaline,with depletion of Nb,Ta,Ti and P.The plagioclase in the amphibolite is oligoclase,belonging to acidic plagioclase.It is speculated that the protolith of the amphibolite is diorite;using geothermobarometer,the peak metamorphic P-T conditions of amphibolite are determined to be 536–593℃/3.4–5.0 kbar,and the post-peak conditions are 429–566℃/1.3–3.1 kbar.The above results indicate that the Paleoproterozoic metamorphism has been superimposed on Longgang Block,linked to a new orogenic event on the northern edge of North China Craton.