China's southwestern special terrain pattern as parallel arrangement between lon- gitudinal towering mountains and deep valleys has significant effects on the differentiation of local natural environment and eco-geog...China's southwestern special terrain pattern as parallel arrangement between lon- gitudinal towering mountains and deep valleys has significant effects on the differentiation of local natural environment and eco-geographical pattern in this region. The 1:50,000 Digital Elevation Model (DEM) data of Longitudinal Range-Gorge Region (LRGR), meteorological observation data from the station establishment to 2010, hydrological observation data, Normalized Difference Vegetation Index (NDVI) and Net Primary Productivity (NPP) products of MOD13 and MOD17 as well as 1:1,000,000 vegetation type data were used. Moisture in- dices including surface atmospheric vapor content, precipitation, aridity/humidity index, sur- face runoff, and temperature indices including average temperature, annual accumulated temperature, total solar radiation were selected. Based on ANUSPLIN spline function, GIS spatial analysis, wavelet analysis and landscape pattern analysis, regional differentiation characteristics and main-control factors of hydrothermal pattern, ecosystem structure and function in this region were analyzed to reveal the effects of terrain pattern o~ regional dif- ferentiation of eco-geographical elements. The results show that: influenced by terrain pattern moisture, temperature and heat in LRGR have shown significant distribution cllaracteristics as intermittent weft differences and continuous warp extension. Longitudinal mountains and valleys not only have a north-south corridor function and diffusion effect on the transfer of major surface materials and energy, but also have east-west barrier function and blocking effect. Special topographic pattern has important influences on vegetation landscape diversity and spatiat pattern of ecosystem structure and function, which is the main-control factor on vegetation landscape diversity and spatial distribution of ecosystem. Wavelet variance analysis reflects the spatial anisotropy of environmental factors, NDVI and NPP, while wavelet consistency analysis reveals the control factors on spatial distribution of NDVI and NPP as well as the quantitative relationship with control degree. Special terrain pattern in LRGR is the major influencing factor on eco-geographical regional differentiation in this region. Under the combined effect of zonality and non-zonality laws with "corridor-barrier" functior as the main characteristic, special spatial characteristics of eco-geographical regional system in LRGR is formed.展开更多
The longitudinal range-gorge region (LRGR) in Southwestern China, characterized by longitudinal mountain ranges and deep valleys, includes the basins of four major international rivers: the Yuanjiang-Red, Lancang Meko...The longitudinal range-gorge region (LRGR) in Southwestern China, characterized by longitudinal mountain ranges and deep valleys, includes the basins of four major international rivers: the Yuanjiang-Red, Lancang Mekong, Nujiang Salween and Irrawaddy. This region is classified as one of the world’s biodiversity hotspots, and provides an important ecological and economic corridor linking China and Southeast Asian countries. Over the past half century, it has served as a resource base for timber and minerals needed to fuel economic development, which resulted in rapid and drastic changes in ecosystem and species diversity. Proposed and ongoing development programs, such as China’s Great Western Development campaign, Greater Mekong Subregional Economic Cooperation (GMS) and China-ASEAN free trade zone development (“10+1”), threaten to bring unprecedented disturbance to the region’s ecosystems. Present and emerging threats to eco-security have caught tremendous attention worldwide. Therefore, studies on such problems are critical for enhancing ecosystem health and transboundary eco-security. This paper indicates several multi-disciplinary and cross-sector studies on transboundary resources in this region that will meet three major national needs: 1) identifying core scientific issues of ecological development and infrastructure construction in highplateau and mountainous areas for the Western Development campaign; 2) developing maintenance mechanisms and control methodologies for transboundary eco-security and resource base development; 3) providing scientific grounds for multi-lateral diplomacy, trade and economic cooperation, and conflict resolution as part of China’s opening-up to south Asia. The key subjects to be solved include dynamics and major drive forces of this area, ecological effects caused by major projects construction, and transboundary eco-security and its controlling. The research projects proposed in this article will develop theories on ecosystem change and transboundary eco-security, and provide a scientific basis for national and international development strategies.展开更多
基金National Basic Research Program of China,No.2003CB415101
文摘China's southwestern special terrain pattern as parallel arrangement between lon- gitudinal towering mountains and deep valleys has significant effects on the differentiation of local natural environment and eco-geographical pattern in this region. The 1:50,000 Digital Elevation Model (DEM) data of Longitudinal Range-Gorge Region (LRGR), meteorological observation data from the station establishment to 2010, hydrological observation data, Normalized Difference Vegetation Index (NDVI) and Net Primary Productivity (NPP) products of MOD13 and MOD17 as well as 1:1,000,000 vegetation type data were used. Moisture in- dices including surface atmospheric vapor content, precipitation, aridity/humidity index, sur- face runoff, and temperature indices including average temperature, annual accumulated temperature, total solar radiation were selected. Based on ANUSPLIN spline function, GIS spatial analysis, wavelet analysis and landscape pattern analysis, regional differentiation characteristics and main-control factors of hydrothermal pattern, ecosystem structure and function in this region were analyzed to reveal the effects of terrain pattern o~ regional dif- ferentiation of eco-geographical elements. The results show that: influenced by terrain pattern moisture, temperature and heat in LRGR have shown significant distribution cllaracteristics as intermittent weft differences and continuous warp extension. Longitudinal mountains and valleys not only have a north-south corridor function and diffusion effect on the transfer of major surface materials and energy, but also have east-west barrier function and blocking effect. Special topographic pattern has important influences on vegetation landscape diversity and spatiat pattern of ecosystem structure and function, which is the main-control factor on vegetation landscape diversity and spatial distribution of ecosystem. Wavelet variance analysis reflects the spatial anisotropy of environmental factors, NDVI and NPP, while wavelet consistency analysis reveals the control factors on spatial distribution of NDVI and NPP as well as the quantitative relationship with control degree. Special terrain pattern in LRGR is the major influencing factor on eco-geographical regional differentiation in this region. Under the combined effect of zonality and non-zonality laws with "corridor-barrier" functior as the main characteristic, special spatial characteristics of eco-geographical regional system in LRGR is formed.
文摘The longitudinal range-gorge region (LRGR) in Southwestern China, characterized by longitudinal mountain ranges and deep valleys, includes the basins of four major international rivers: the Yuanjiang-Red, Lancang Mekong, Nujiang Salween and Irrawaddy. This region is classified as one of the world’s biodiversity hotspots, and provides an important ecological and economic corridor linking China and Southeast Asian countries. Over the past half century, it has served as a resource base for timber and minerals needed to fuel economic development, which resulted in rapid and drastic changes in ecosystem and species diversity. Proposed and ongoing development programs, such as China’s Great Western Development campaign, Greater Mekong Subregional Economic Cooperation (GMS) and China-ASEAN free trade zone development (“10+1”), threaten to bring unprecedented disturbance to the region’s ecosystems. Present and emerging threats to eco-security have caught tremendous attention worldwide. Therefore, studies on such problems are critical for enhancing ecosystem health and transboundary eco-security. This paper indicates several multi-disciplinary and cross-sector studies on transboundary resources in this region that will meet three major national needs: 1) identifying core scientific issues of ecological development and infrastructure construction in highplateau and mountainous areas for the Western Development campaign; 2) developing maintenance mechanisms and control methodologies for transboundary eco-security and resource base development; 3) providing scientific grounds for multi-lateral diplomacy, trade and economic cooperation, and conflict resolution as part of China’s opening-up to south Asia. The key subjects to be solved include dynamics and major drive forces of this area, ecological effects caused by major projects construction, and transboundary eco-security and its controlling. The research projects proposed in this article will develop theories on ecosystem change and transboundary eco-security, and provide a scientific basis for national and international development strategies.
基金Underthe auspices of the National Key Projectfor Basic Researchon Ecosystem Changesin Longitudinal Range-Gorge Regionand Transboundary Eco-security of Southwest China (2003CB415103)