In general,the purpose of the mineralization modeling is the advancement of a mineral exploration project and ultimately,the extractive design of a deposit,which is one of the most important stages in mining engineeri...In general,the purpose of the mineralization modeling is the advancement of a mineral exploration project and ultimately,the extractive design of a deposit,which is one of the most important stages in mining engineering.Mineralization modeling is divided into two general categories,superficial and deep modeling.In surface modeling,the aim is finding abnormal locations in terms of mineralization at the study area,which is commonly used in the early stages of exploration as one of the means for locating exploratory boreholes.After drilling in the study area with the aim of identifying mineralization and reserve estimation it is necessary to obtain deep mineralization position and its geometric features,using statistical and modeling methods.Using mathematical,statistical and modeling methods,we can predict the position of iron mineralization in places where drilling is not done and eventually reach a three-dimensional model of the mineral materials underground.As a case study,the deep information about the boreholes of the sheytoor mining area in Yazd province of Iran was investigated.Iron mineralization was modeled as 2D cumulative model and 3D block model,and the results were presented.Finally the geochemical threshold and the anomalous limit of iron element are calculated by concentration-volume(C-V)fractal method in this deposit.Geochemical threshold and the anomalous limit for Fe in this deposit are 24.7%and 34.3%respectively.展开更多
The Bayan Obo deposit in northern China is an ultra-large Fe–REE–Nb deposit.The occurrences,and geochemical characteristics of thorium in iron ores from the Bayan Obo Main Ore Body were examined using chemical analy...The Bayan Obo deposit in northern China is an ultra-large Fe–REE–Nb deposit.The occurrences,and geochemical characteristics of thorium in iron ores from the Bayan Obo Main Ore Body were examined using chemical analysis,field emission scanning electron microscopy,energy dispersive spectrometer,and automatic mineral analysis software.Results identified that 91.69%of ThO2 in the combined samples was mainly distributed in rare earth minerals(bastnaesite,huanghoite,monazite;56.43%abundance in the samples),iron minerals(magnetite,hematite,pyrite;20.97%),niobium minerals(aeschynite;14.29%),and gangue minerals(aegirine,riebeckite,mica,dolomite,apatite,fluorite;4.22%).An unidentified portion(4.09%)of ThO2 may occur in other niobium minerals(niobite,ilmenorutile,pyrochlore).Only a few independent minerals of thorium occur in the iron ore samples.Thorium mainly occurs in rare earth minerals in the form of isomorphic substitution.Analyses of the geochemical characteristics of the major elements indicate that thorium mineralization in the Main Ore Body was related to alkali metasomatism,which provided source material and favorable porosity for hydrothermal mineralization.Trace elements such as Sc,Nb,Zr,and Ta have higher correlation coefficients with thorium,which resulted from being related to the relevant minerals formed during thorium mineralization.In addition,correlation analysis of ThO2 and TFe,and REO and TFe in the six types of iron ore samples showed that ThO2 did not always account for the highest distribution rate in rare earth minerals,and the main occurrence minerals of ThO2 were closely related to iron ore types.展开更多
The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Caraj...The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets.展开更多
The Jalal-Abad iron ore deposit, with a reserve of more than 200 Mt ore, is located in NW of Zarand region, southeastern Iran. The ore deposit occurs in the form of an elongated lens-shaped body incorporated in a fold...The Jalal-Abad iron ore deposit, with a reserve of more than 200 Mt ore, is located in NW of Zarand region, southeastern Iran. The ore deposit occurs in the form of an elongated lens-shaped body incorporated in a folded structure of Rizu volcano-sedimentary unit. Mineralization occurred mainly in siltstones, acidic volcanic rocks and dolomitized limestones. The ore minerals include magnetite, hematite, pyrite, chalcopyrite, goethite, malachite and azurite. Chloritization and silicification are the two most widespread alteration types in the Jalal-Abad area. Cu and Ti are among the associated elements with iron in the ore samples. In comparison, the concentrations of Cu, Ti and REE are relatively low in the samples analyzed. The combined concentrations of Ce, La and Y show that geochemical background values for most areas have been measured. The Pearson correlation coefficient values and the results of cluster and principal component analyses indicate a strong correlation between REE, La, Ce, and Y with Sr in the same geochemical group suggesting a common source for these elements. A close association between Cu and Cl with metasomatic host rock and among Pb, Zn and Ba with carbonate host rocks is observed.展开更多
The Shilu iron ore deposit,located in the western Hainan Province,South China,is one of the most important iron-ore mining districts in China not only for its huge reserves of hematite-rich ores,but also for its poten...The Shilu iron ore deposit,located in the western Hainan Province,South China,is one of the most important iron-ore mining districts in China not only for its huge reserves of hematite-rich ores,but also for its potentially economic significance of associated metals of copper,cobalt,nickel,silver,lead and zinc,and of non-metals of dolomite,quartzite,barite,gypsum and sulfur.展开更多
The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- c...The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).展开更多
The Agios Athanasios ore deposit is located within the wider area of Ieropigi in Kastoria, Greece. The specific ore deposit is developed in form of layers between ophiolites and Tertiary molassic conglomerates. The ma...The Agios Athanasios ore deposit is located within the wider area of Ieropigi in Kastoria, Greece. The specific ore deposit is developed in form of layers between ophiolites and Tertiary molassic conglomerates. The main mineralogical components are hematite, goethite, quartz, and secondarily, garnierite, lizardite, saponite, willemzeite and sepiolite, while scarcers are chromite, calcite and nepouite. Nickel is mainly found in garnierite, willemzeite and nepouite, which in coexistence with quartz are the main components in the binder material of the ore. For the mineral processing gravimetric and magnetic separations are used in the size of fractions -8 + 4 mm, -4 + 1 mm, -1 + 0.250 mm and -0.250 + 0.063 mm. The chemical and mineralogical analysis in combination with microscopic examination showed that mineral processing by gravimetric separation gave the most satisfactory results for the size fraction -1 + 0.250 mm.展开更多
Despite the growing concern regarding post-mineralization thermo-tectonic processes in recent years,the relative roles in exhuming and preserving ore deposits remain highly controversial.This study presents new apatit...Despite the growing concern regarding post-mineralization thermo-tectonic processes in recent years,the relative roles in exhuming and preserving ore deposits remain highly controversial.This study presents new apatite fission track and(U-Th)/He data from the Xishimen iron skarn deposit in the Handan-Xingtai district,central North China Craton.Apatite fission track dating yielded central ages ranging from 88±18 Ma to 125±9 Ma,with mean confined track lengths varying between 11.9±0.4μm and 13.3±0.2μm.Integrated apatite(U-Th)/He dating provided ages of 42.5±0.8 Ma to 48.1±3.3 Ma.Our new data,combined with previous zircon U-Pb and potassium-bearing mineral^(40)Ar/^(39)Ar ages,revealed three cooling episodes:very rapid cooling(100–140℃/Ma)at ca.130–120 Ma,a protracted slow cooling period(0.2–0.4℃/Ma)at ca.120–50 Ma,and moderate cooling(0.8–1.0℃/Ma)since ca.50 Ma.The initial rapid cooling phase was primarily attributed to post-magmatic thermal equilibration following the shallow emplacement of the Xishimen deposit.The subsequent cooling phases were controlled by uplift and exhumation processes.Our thermal models indicate an estimated total unroofing thickness of<3 km,which is shallower than the emplacement depth of the ore deposit(3–5 km).This suggests significant potential for mineral exploration.Furthermore,a comprehensive review of preservation mechanisms for various ore deposits underscores the significant role of tectonics in both exhuming and preserving ore bodies.展开更多
Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magn...Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magnetite, apatite and actinolite (or diopside). The second type occurs within magnetite-apatite veins in the iron ores. The third type is seen in magnetite-apatite veins and (or) nodules in host rocks (i.e. gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins f'dfing fractures in the Xiangshan Group. Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented. The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores, nelsonites. They are enriched in fight REE, with pronounced negative Eu anomalies. The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types, e.g. immiscibility. Early magmatic apatites contain 3031.48-12080 ×10^-6 REE. Later hydrothermal apatite contains 1958 ×10^-6 REE, indicating that the later hydrothermal ore-forming solution contains lower REE. Although gabbro-diorite porphyry and apatite show similar REE patterns, gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies, caused both by reduction environment of mantle source region and by fractionation and crystallization (immiscibility) under a high oxygen fugacity condition. Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu^2+ by earlier diopsite during ore magma cooling. The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of ^87Sr/^86Sr values from 0.7071 to 0.7073, similar to those of the volcanic and subvolcaulc rocks, indicating that apatites were formed by liquid immiscibility and differentiation of intermediate and basic magmas.展开更多
The Lala Cu deposit in Sichuan Province is one of the most important large deposits in SW China,both in terms of Cu and associated Au-Mo-Co-REE-Fe. Systematic ore petrology study shows that ore minerals are mainly com...The Lala Cu deposit in Sichuan Province is one of the most important large deposits in SW China,both in terms of Cu and associated Au-Mo-Co-REE-Fe. Systematic ore petrology study shows that ore minerals are mainly composed of hydrothermal magnetite,chalcopyrite and molybdenite.The wall-rock alterations include biotitization,silicification, carbonatation,albitization,potash feldspathization, apatitation,actinolitation and fluoritation,et al. The Pyrite and magnetite have euhedral-subhedral crystalline grained texture and the chalcopyrite展开更多
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetall...Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.展开更多
Discovered in Early Proterozoic Xuanlong iron ore deposits are six genera of fossil iron bacteria, i. e. sphere (coenobium of) rod-shaped (monomer) Naumanniella, ellipsoid elliptical Ochrobium,sphere spherical Sideroc...Discovered in Early Proterozoic Xuanlong iron ore deposits are six genera of fossil iron bacteria, i. e. sphere (coenobium of) rod-shaped (monomer) Naumanniella, ellipsoid elliptical Ochrobium,sphere spherical Siderocapsa and chain spherical Siderococcus, chain rod-shaped Leptothrix and Lieskeella, and six genera of fossil blue bacteria, namely sphere spherical Gloeocapsa, Synechocystis and Globobacter, chain spherical Anabaena and Nostoc, and con-strictive septate tubular Nodularia. The biomineralized monomers and coenobia of the two cate-gories of bacteria, together with hematite plates made up the bacteria pelletal, bacteria silky, bacteria fibrous and clasty bacteria pelletal textural lamina. The bacteria pelletal laminae com-bined with other bacteria laminae to make up oncolite, stromatolite and laminate. The precipita-tion of iron oxide was accelerated due to iron and blue bacteria cohabiting on microbial film or mat. The Xuanlong iron ore deposits are microbial binding ore deposits of ocean source.展开更多
文摘In general,the purpose of the mineralization modeling is the advancement of a mineral exploration project and ultimately,the extractive design of a deposit,which is one of the most important stages in mining engineering.Mineralization modeling is divided into two general categories,superficial and deep modeling.In surface modeling,the aim is finding abnormal locations in terms of mineralization at the study area,which is commonly used in the early stages of exploration as one of the means for locating exploratory boreholes.After drilling in the study area with the aim of identifying mineralization and reserve estimation it is necessary to obtain deep mineralization position and its geometric features,using statistical and modeling methods.Using mathematical,statistical and modeling methods,we can predict the position of iron mineralization in places where drilling is not done and eventually reach a three-dimensional model of the mineral materials underground.As a case study,the deep information about the boreholes of the sheytoor mining area in Yazd province of Iran was investigated.Iron mineralization was modeled as 2D cumulative model and 3D block model,and the results were presented.Finally the geochemical threshold and the anomalous limit of iron element are calculated by concentration-volume(C-V)fractal method in this deposit.Geochemical threshold and the anomalous limit for Fe in this deposit are 24.7%and 34.3%respectively.
基金supported by the National Basic Research Program of China (973 Program) (2012CBA01200)Northern Rare Earth Science and Technology Project (BFXT-2015D-0002) and (2016H1928)
文摘The Bayan Obo deposit in northern China is an ultra-large Fe–REE–Nb deposit.The occurrences,and geochemical characteristics of thorium in iron ores from the Bayan Obo Main Ore Body were examined using chemical analysis,field emission scanning electron microscopy,energy dispersive spectrometer,and automatic mineral analysis software.Results identified that 91.69%of ThO2 in the combined samples was mainly distributed in rare earth minerals(bastnaesite,huanghoite,monazite;56.43%abundance in the samples),iron minerals(magnetite,hematite,pyrite;20.97%),niobium minerals(aeschynite;14.29%),and gangue minerals(aegirine,riebeckite,mica,dolomite,apatite,fluorite;4.22%).An unidentified portion(4.09%)of ThO2 may occur in other niobium minerals(niobite,ilmenorutile,pyrochlore).Only a few independent minerals of thorium occur in the iron ore samples.Thorium mainly occurs in rare earth minerals in the form of isomorphic substitution.Analyses of the geochemical characteristics of the major elements indicate that thorium mineralization in the Main Ore Body was related to alkali metasomatism,which provided source material and favorable porosity for hydrothermal mineralization.Trace elements such as Sc,Nb,Zr,and Ta have higher correlation coefficients with thorium,which resulted from being related to the relevant minerals formed during thorium mineralization.In addition,correlation analysis of ThO2 and TFe,and REO and TFe in the six types of iron ore samples showed that ThO2 did not always account for the highest distribution rate in rare earth minerals,and the main occurrence minerals of ThO2 were closely related to iron ore types.
基金supported by the National Natural Science Foundation of China (grant No. 40773038the Program of High-level Geological Talents (201309)Youth Geological Talents (201112) of the China Geological Survey
文摘The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets.
文摘The Jalal-Abad iron ore deposit, with a reserve of more than 200 Mt ore, is located in NW of Zarand region, southeastern Iran. The ore deposit occurs in the form of an elongated lens-shaped body incorporated in a folded structure of Rizu volcano-sedimentary unit. Mineralization occurred mainly in siltstones, acidic volcanic rocks and dolomitized limestones. The ore minerals include magnetite, hematite, pyrite, chalcopyrite, goethite, malachite and azurite. Chloritization and silicification are the two most widespread alteration types in the Jalal-Abad area. Cu and Ti are among the associated elements with iron in the ore samples. In comparison, the concentrations of Cu, Ti and REE are relatively low in the samples analyzed. The combined concentrations of Ce, La and Y show that geochemical background values for most areas have been measured. The Pearson correlation coefficient values and the results of cluster and principal component analyses indicate a strong correlation between REE, La, Ce, and Y with Sr in the same geochemical group suggesting a common source for these elements. A close association between Cu and Cl with metasomatic host rock and among Pb, Zn and Ba with carbonate host rocks is observed.
文摘The Shilu iron ore deposit,located in the western Hainan Province,South China,is one of the most important iron-ore mining districts in China not only for its huge reserves of hematite-rich ores,but also for its potentially economic significance of associated metals of copper,cobalt,nickel,silver,lead and zinc,and of non-metals of dolomite,quartzite,barite,gypsum and sulfur.
基金the China State Mineral Resources Investigation Program (Grant No.1212011220936)National Science Foundation of China (Grant No.U1403292 41472196)
文摘The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).
文摘The Agios Athanasios ore deposit is located within the wider area of Ieropigi in Kastoria, Greece. The specific ore deposit is developed in form of layers between ophiolites and Tertiary molassic conglomerates. The main mineralogical components are hematite, goethite, quartz, and secondarily, garnierite, lizardite, saponite, willemzeite and sepiolite, while scarcers are chromite, calcite and nepouite. Nickel is mainly found in garnierite, willemzeite and nepouite, which in coexistence with quartz are the main components in the binder material of the ore. For the mineral processing gravimetric and magnetic separations are used in the size of fractions -8 + 4 mm, -4 + 1 mm, -1 + 0.250 mm and -0.250 + 0.063 mm. The chemical and mineralogical analysis in combination with microscopic examination showed that mineral processing by gravimetric separation gave the most satisfactory results for the size fraction -1 + 0.250 mm.
基金supported by the Open Project Program of Hebei Province Collaborative Innovation Center for Strategic Critical Mineral Research,Hebei GEO University,China(No.HGUXT-2023-14)the China Geological Survey(DD20221646)+1 种基金National Natural Science Foundation of Hebei Province(Nos.D2020402013 and D2023402022)National Natural Science Foundation of China(No.42102091).
文摘Despite the growing concern regarding post-mineralization thermo-tectonic processes in recent years,the relative roles in exhuming and preserving ore deposits remain highly controversial.This study presents new apatite fission track and(U-Th)/He data from the Xishimen iron skarn deposit in the Handan-Xingtai district,central North China Craton.Apatite fission track dating yielded central ages ranging from 88±18 Ma to 125±9 Ma,with mean confined track lengths varying between 11.9±0.4μm and 13.3±0.2μm.Integrated apatite(U-Th)/He dating provided ages of 42.5±0.8 Ma to 48.1±3.3 Ma.Our new data,combined with previous zircon U-Pb and potassium-bearing mineral^(40)Ar/^(39)Ar ages,revealed three cooling episodes:very rapid cooling(100–140℃/Ma)at ca.130–120 Ma,a protracted slow cooling period(0.2–0.4℃/Ma)at ca.120–50 Ma,and moderate cooling(0.8–1.0℃/Ma)since ca.50 Ma.The initial rapid cooling phase was primarily attributed to post-magmatic thermal equilibration following the shallow emplacement of the Xishimen deposit.The subsequent cooling phases were controlled by uplift and exhumation processes.Our thermal models indicate an estimated total unroofing thickness of<3 km,which is shallower than the emplacement depth of the ore deposit(3–5 km).This suggests significant potential for mineral exploration.Furthermore,a comprehensive review of preservation mechanisms for various ore deposits underscores the significant role of tectonics in both exhuming and preserving ore bodies.
基金This paper is financially aided by the National Natural Science Foundation of China (Grant No. 40472055).
文摘Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magnetite, apatite and actinolite (or diopside). The second type occurs within magnetite-apatite veins in the iron ores. The third type is seen in magnetite-apatite veins and (or) nodules in host rocks (i.e. gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins f'dfing fractures in the Xiangshan Group. Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented. The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores, nelsonites. They are enriched in fight REE, with pronounced negative Eu anomalies. The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types, e.g. immiscibility. Early magmatic apatites contain 3031.48-12080 ×10^-6 REE. Later hydrothermal apatite contains 1958 ×10^-6 REE, indicating that the later hydrothermal ore-forming solution contains lower REE. Although gabbro-diorite porphyry and apatite show similar REE patterns, gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies, caused both by reduction environment of mantle source region and by fractionation and crystallization (immiscibility) under a high oxygen fugacity condition. Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu^2+ by earlier diopsite during ore magma cooling. The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of ^87Sr/^86Sr values from 0.7071 to 0.7073, similar to those of the volcanic and subvolcaulc rocks, indicating that apatites were formed by liquid immiscibility and differentiation of intermediate and basic magmas.
文摘The Lala Cu deposit in Sichuan Province is one of the most important large deposits in SW China,both in terms of Cu and associated Au-Mo-Co-REE-Fe. Systematic ore petrology study shows that ore minerals are mainly composed of hydrothermal magnetite,chalcopyrite and molybdenite.The wall-rock alterations include biotitization,silicification, carbonatation,albitization,potash feldspathization, apatitation,actinolitation and fluoritation,et al. The Pyrite and magnetite have euhedral-subhedral crystalline grained texture and the chalcopyrite
基金supported by the National Natural Science Foundation of China (Grant No. 40930419)the National Special Research Programs for Non-Profit Trades (Sponsored by MLR, Grant Nos. 200911007 and 200811114)Open Foundation of State Key laboratory of Geological Processes and Mineral Resources, School of the Earth Sciences and Resources, China University of Geosciences, Beijing (Grant No. GPMR201029)
文摘Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.
基金This project was supported by the National Natural Science Foundation of China (Grant No.49372112) and directed by Academician Sun Shu.
文摘Discovered in Early Proterozoic Xuanlong iron ore deposits are six genera of fossil iron bacteria, i. e. sphere (coenobium of) rod-shaped (monomer) Naumanniella, ellipsoid elliptical Ochrobium,sphere spherical Siderocapsa and chain spherical Siderococcus, chain rod-shaped Leptothrix and Lieskeella, and six genera of fossil blue bacteria, namely sphere spherical Gloeocapsa, Synechocystis and Globobacter, chain spherical Anabaena and Nostoc, and con-strictive septate tubular Nodularia. The biomineralized monomers and coenobia of the two cate-gories of bacteria, together with hematite plates made up the bacteria pelletal, bacteria silky, bacteria fibrous and clasty bacteria pelletal textural lamina. The bacteria pelletal laminae com-bined with other bacteria laminae to make up oncolite, stromatolite and laminate. The precipita-tion of iron oxide was accelerated due to iron and blue bacteria cohabiting on microbial film or mat. The Xuanlong iron ore deposits are microbial binding ore deposits of ocean source.