Fossil mammal-riched Neogene strata are widely distributed in the southeast corner of the huge Longzhong Basin at Tianshui, Gansu Province, northern central China. Hipparion weihoense, a typical member of late Middle ...Fossil mammal-riched Neogene strata are widely distributed in the southeast corner of the huge Longzhong Basin at Tianshui, Gansu Province, northern central China. Hipparion weihoense, a typical member of late Middle Miocene Bahean stage, was recently excavated at Yaodian along a well-exposed outcrop. Owing to the importance of the Bahean stage in the mammalian evolution and its potential for environmental change, we suggested a name of Yaodian Formation for the stratigra- phy, which is correlated to the Bahe Formation at Lantian, Shaanxi. High resolution paleomagnetic dating of the section shows that the Yaodian Formation covers the period between 11.67 Ma and 7.43 Ma, with the site bearing Hipparion weihoense being estimated at about 10.54―10.30 Ma, providing first magnetostratigraphic chronology for the Bahean Stage. The Yaodian Formation consists of fluvial channel deposits (11.67―10.40 Ma) at the bottom, floodplain deposits in the middle (10.40―9.23 Ma) and shallow lake sediments at the top (9.23―7.43 Ma). This upward fining sequence suggests that the relief in nearby mountain ranges such as West Qinling to the south and Huajia Ling to the north was greatly reduced after long-term denudation, fluvial transport capacity was low, and finally the drainage system was disintegrated, replaced with broad-shallow lakes in which only fine sediments like mud and marlite were deposited, indicating an old stage of development of a planation surface. A remarkable shift in ecology and climatic environment was found at 7.4―7.7 Ma when paleoclimate changed from early warm humid to late dry as indicated by sedimentary facies changed from early shallow lake sequence to late eolian red clays and a former coniferous-deciduous mixed forest was replaced by grassland, leading to great growth of Hipparion Fauna of Baodean stage in the region. Therefore, it is estimated that the present high relief of Qinling and drainage pattern did not come into being until Late Pliocene in response to intensive neotectonism and climate change.展开更多
农田生态系统碳通量变化主要由作物光合作用和农田的呼吸作用引起。在陆地生态系统中,准确评估玉米农田生态系统的呼吸作用产生的碳排放量对全球碳通量的研究意义重大。使用甘肃省会宁县大山川村(属陇中半干旱区)玉米农田生态系统在2020...农田生态系统碳通量变化主要由作物光合作用和农田的呼吸作用引起。在陆地生态系统中,准确评估玉米农田生态系统的呼吸作用产生的碳排放量对全球碳通量的研究意义重大。使用甘肃省会宁县大山川村(属陇中半干旱区)玉米农田生态系统在2020年11月至2021年10月的涡度和土壤水分及温度监测数据,分析了玉米农田生态系统呼吸速率(R_(eco))的日平均变化和呼吸敏感性指数(Q_(10))在生长季内的月平均变化,探讨R_(eco)对温度的响应,并用不同模型进行拟合评估。陇中半干旱区玉米农田生态系统呼吸速率在年内呈单峰变化,日均最大呼吸速率11.49μmol/(m^(2)·s),相比呼吸速率对空气温度(Ta)与不同深度土壤温度(Ts)的响应,深度20 cm处的土壤温度(Ts_(20))对该地区R_(eco)全年拟合效果最佳。Q_(10)指数在生长季内表现出单峰型变化,最大值出现在8月(5.52μmol/(m^(2)·s)。通过各个模型拟合得出陇中地区玉米农田生态系统年呼吸碳排放量介于863.71~990.18 g C/m^(2),选择拟合效果最好的模型(Q_(10)模型),在考虑参数时变性对Q_(10)模型优化后,Q_(10)模型拟合精度得到大幅度提升,年碳排放量估计值由868.57 g C/m^(2)提高至1094.48 g C/m^(2),更加接近观测值(1110.28 g C/m^(2))。R_(eco)在土壤水分低于0.16 m^(3)/m^(3)时(出现在12-2月)受到抑制。展开更多
基金This work was supported by the National Basic Research Program of China(Grant No.2005CB422001)the National Natural Science Foundation of China(Grant Nos.90211013,40421101 and 40201007).
文摘Fossil mammal-riched Neogene strata are widely distributed in the southeast corner of the huge Longzhong Basin at Tianshui, Gansu Province, northern central China. Hipparion weihoense, a typical member of late Middle Miocene Bahean stage, was recently excavated at Yaodian along a well-exposed outcrop. Owing to the importance of the Bahean stage in the mammalian evolution and its potential for environmental change, we suggested a name of Yaodian Formation for the stratigra- phy, which is correlated to the Bahe Formation at Lantian, Shaanxi. High resolution paleomagnetic dating of the section shows that the Yaodian Formation covers the period between 11.67 Ma and 7.43 Ma, with the site bearing Hipparion weihoense being estimated at about 10.54―10.30 Ma, providing first magnetostratigraphic chronology for the Bahean Stage. The Yaodian Formation consists of fluvial channel deposits (11.67―10.40 Ma) at the bottom, floodplain deposits in the middle (10.40―9.23 Ma) and shallow lake sediments at the top (9.23―7.43 Ma). This upward fining sequence suggests that the relief in nearby mountain ranges such as West Qinling to the south and Huajia Ling to the north was greatly reduced after long-term denudation, fluvial transport capacity was low, and finally the drainage system was disintegrated, replaced with broad-shallow lakes in which only fine sediments like mud and marlite were deposited, indicating an old stage of development of a planation surface. A remarkable shift in ecology and climatic environment was found at 7.4―7.7 Ma when paleoclimate changed from early warm humid to late dry as indicated by sedimentary facies changed from early shallow lake sequence to late eolian red clays and a former coniferous-deciduous mixed forest was replaced by grassland, leading to great growth of Hipparion Fauna of Baodean stage in the region. Therefore, it is estimated that the present high relief of Qinling and drainage pattern did not come into being until Late Pliocene in response to intensive neotectonism and climate change.
文摘农田生态系统碳通量变化主要由作物光合作用和农田的呼吸作用引起。在陆地生态系统中,准确评估玉米农田生态系统的呼吸作用产生的碳排放量对全球碳通量的研究意义重大。使用甘肃省会宁县大山川村(属陇中半干旱区)玉米农田生态系统在2020年11月至2021年10月的涡度和土壤水分及温度监测数据,分析了玉米农田生态系统呼吸速率(R_(eco))的日平均变化和呼吸敏感性指数(Q_(10))在生长季内的月平均变化,探讨R_(eco)对温度的响应,并用不同模型进行拟合评估。陇中半干旱区玉米农田生态系统呼吸速率在年内呈单峰变化,日均最大呼吸速率11.49μmol/(m^(2)·s),相比呼吸速率对空气温度(Ta)与不同深度土壤温度(Ts)的响应,深度20 cm处的土壤温度(Ts_(20))对该地区R_(eco)全年拟合效果最佳。Q_(10)指数在生长季内表现出单峰型变化,最大值出现在8月(5.52μmol/(m^(2)·s)。通过各个模型拟合得出陇中地区玉米农田生态系统年呼吸碳排放量介于863.71~990.18 g C/m^(2),选择拟合效果最好的模型(Q_(10)模型),在考虑参数时变性对Q_(10)模型优化后,Q_(10)模型拟合精度得到大幅度提升,年碳排放量估计值由868.57 g C/m^(2)提高至1094.48 g C/m^(2),更加接近观测值(1110.28 g C/m^(2))。R_(eco)在土壤水分低于0.16 m^(3)/m^(3)时(出现在12-2月)受到抑制。