A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mas...A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mass transfer properties. Based on the analysis of geometrical construction and fluid properties of gas and slurry, MIALR was divided into six flow regions. In these flow regions, the local hydrodynamic characteristics were investigated over a wide range of operating variables. Furthermore, a new method was developed to measure the dissolved oxygen concentration. The volumetric mass-transfer coefficient in six flow regions was also calculated for comparison.展开更多
In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete num...In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete numbers of the reactor were above 0.2. The serial number n was 2.5 -3.0. It was judged accordingly that the reactor fluid state was continous stirred tank reactor (CSTR) mainly. When the inspiratory capacity increased the mixing time of the reactor was shortened. Thus the air input was beneficial for the fluid mixing. During the three phases mixing process, the mixing time of the reactor could be decreased by the n increase of carrier and air loading together, but the change was not significant. The parameters affecting the reactor fluid state were fluid velocity, inspiratory capacity and carrier. KLa could be increased with the air loading increase, and at the same gas/liquid ratio when the pressure drop was high, KL~ value was increased. The amount of carrier complex influence on KLa. As the carrier loading continued to increase, its value had been dropped but the changes was not significant, and optimization condition was found at above 800 1 000 g carrier loading (pouzzolane) or 600 g PVC. Under gas/liquid ratio of 0.8% -5.2%, KLa was (0.62-1.37)×10^-2· s^-1.展开更多
The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat...The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat transfer performance is usually challenging, and few previous studies gave an overall view of heat exchange performance of different types of reactors. In this review, heat transfer coefficients of two types of petrochemical reactors, including the packed bed and the fluidized bed, were systematically analyzed and compared based on a number of reported correlations. The relationship between heat transfer coefficients and fluid flow velocity in different reactors has been well established, which clearly demonstrates the varying range of their heat transfer coefficients. Heat transfer coefficients of gas-phase packed bed can exceed 200 W/m^2·K, rather than the suggested values(17—89 W/m^2·K) mentioned in the literature. The fluidized bed shows better performance for both two-phase and three-phase beds as compared to the packed bed. Systems with liquid phase also show better heat transfer performance than other phases because of the larger heat capacity of liquid. Thus the industrial three-phase fluidized beds have the best heat transfer performance with an overall heat transfer coefficient of greater than 1 000 W/m^2·K. The heat transfer results provided by this review can afford not only new insights into the heat transfer in typical reactors, but also the basis and guidelines for reactor design and selection.展开更多
To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits an...To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network.展开更多
The hydrodynamic and mass transfer characteristics of a downflow liquid jet loop reactor (D-JLR) were studied experimentally with water/air and CMC (carboxymethyl cellulose) solution/air systems. The effects of the ge...The hydrodynamic and mass transfer characteristics of a downflow liquid jet loop reactor (D-JLR) were studied experimentally with water/air and CMC (carboxymethyl cellulose) solution/air systems. The effects of the geometry, the operating parameters and the physical properties of the liquid phase on gas hold-up and mass transfer coefficient were measuered. Compared with other types of gas-liquid reactor, D-JLR shows higher mass transfer coefficient and lower energy dissipation rate, the optimum diameter ratio was found to be about 0.42-0.6. A model for gas hold-up in D-JLR with Newtonian and non-Newtonian fluids has been developed on the basis of the equation of motion and the concept of average mixing length. The prediction of gas hold-up with the model agreed with the experimental results of this work.展开更多
Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick,...Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.展开更多
Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multipl...Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0°C/60°C and the two evaporators’ heat load 30/30 W.展开更多
文摘A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mass transfer properties. Based on the analysis of geometrical construction and fluid properties of gas and slurry, MIALR was divided into six flow regions. In these flow regions, the local hydrodynamic characteristics were investigated over a wide range of operating variables. Furthermore, a new method was developed to measure the dissolved oxygen concentration. The volumetric mass-transfer coefficient in six flow regions was also calculated for comparison.
基金Project supported by the Foundation Social European,Republoque Francaise
文摘In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete numbers of the reactor were above 0.2. The serial number n was 2.5 -3.0. It was judged accordingly that the reactor fluid state was continous stirred tank reactor (CSTR) mainly. When the inspiratory capacity increased the mixing time of the reactor was shortened. Thus the air input was beneficial for the fluid mixing. During the three phases mixing process, the mixing time of the reactor could be decreased by the n increase of carrier and air loading together, but the change was not significant. The parameters affecting the reactor fluid state were fluid velocity, inspiratory capacity and carrier. KLa could be increased with the air loading increase, and at the same gas/liquid ratio when the pressure drop was high, KL~ value was increased. The amount of carrier complex influence on KLa. As the carrier loading continued to increase, its value had been dropped but the changes was not significant, and optimization condition was found at above 800 1 000 g carrier loading (pouzzolane) or 600 g PVC. Under gas/liquid ratio of 0.8% -5.2%, KLa was (0.62-1.37)×10^-2· s^-1.
文摘The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat transfer performance is usually challenging, and few previous studies gave an overall view of heat exchange performance of different types of reactors. In this review, heat transfer coefficients of two types of petrochemical reactors, including the packed bed and the fluidized bed, were systematically analyzed and compared based on a number of reported correlations. The relationship between heat transfer coefficients and fluid flow velocity in different reactors has been well established, which clearly demonstrates the varying range of their heat transfer coefficients. Heat transfer coefficients of gas-phase packed bed can exceed 200 W/m^2·K, rather than the suggested values(17—89 W/m^2·K) mentioned in the literature. The fluidized bed shows better performance for both two-phase and three-phase beds as compared to the packed bed. Systems with liquid phase also show better heat transfer performance than other phases because of the larger heat capacity of liquid. Thus the industrial three-phase fluidized beds have the best heat transfer performance with an overall heat transfer coefficient of greater than 1 000 W/m^2·K. The heat transfer results provided by this review can afford not only new insights into the heat transfer in typical reactors, but also the basis and guidelines for reactor design and selection.
基金Supported by the National Natural Science Foundation of China (61101129)Specialized Research Fund for the Doctoral Program of Higher Education(20091101110019)
文摘To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network.
文摘The hydrodynamic and mass transfer characteristics of a downflow liquid jet loop reactor (D-JLR) were studied experimentally with water/air and CMC (carboxymethyl cellulose) solution/air systems. The effects of the geometry, the operating parameters and the physical properties of the liquid phase on gas hold-up and mass transfer coefficient were measuered. Compared with other types of gas-liquid reactor, D-JLR shows higher mass transfer coefficient and lower energy dissipation rate, the optimum diameter ratio was found to be about 0.42-0.6. A model for gas hold-up in D-JLR with Newtonian and non-Newtonian fluids has been developed on the basis of the equation of motion and the concept of average mixing length. The prediction of gas hold-up with the model agreed with the experimental results of this work.
文摘Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.
文摘Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0°C/60°C and the two evaporators’ heat load 30/30 W.