A Lorenz map f : I --> I is a one dimensional piecewise monotone map with a single discontinuity c. Let [GRAPHICS] be the collection of all the preimsges of c. Authors prove that if C'(f) is countable then ther...A Lorenz map f : I --> I is a one dimensional piecewise monotone map with a single discontinuity c. Let [GRAPHICS] be the collection of all the preimsges of c. Authors prove that if C'(f) is countable then there exists M such that Card(omega(x)) less than or equal to M for all x is an element of I. If C'(f) is uncountable then omega(x) is uncountable for some x is an element of I. So f is asymptotically periodic if and only if C'(f) is countable.展开更多
文摘A Lorenz map f : I --> I is a one dimensional piecewise monotone map with a single discontinuity c. Let [GRAPHICS] be the collection of all the preimsges of c. Authors prove that if C'(f) is countable then there exists M such that Card(omega(x)) less than or equal to M for all x is an element of I. If C'(f) is uncountable then omega(x) is uncountable for some x is an element of I. So f is asymptotically periodic if and only if C'(f) is countable.