This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz s...This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.展开更多
Lorenz systems family unifying Lorenz system, Chen system and Lü system is a typical chaotic family. In this paper, we consider impulsive control Lorenz chaotic systems family with time-varying impulse intervals....Lorenz systems family unifying Lorenz system, Chen system and Lü system is a typical chaotic family. In this paper, we consider impulsive control Lorenz chaotic systems family with time-varying impulse intervals. By establishing an effective tool of a set of inequalities, we analyze the asymptotic stability of impulsive control Lorenz systems family and obtain some new less conservative conditions. Based on the stability analysis, we design a novel impulsive controller with time-varying impulse intervals. Illustrative examples are provided to show the feasibility and effectiveness of our method. The obtained results not only can be used to design impulsive control for Lorenz systems family, but also can be extended to other chaotic systems.展开更多
In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bo...In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bounds are derived. The results presented in this paper contain all the existing results as special cases. In particular, the critical cases, b→ 1^+ and a→0^+, for which the previous methods failed, have been solved using a unified formula.展开更多
Although some numerical methods of the fractional-order chaotic systems have been announced,high-precision numerical methods have always been the direction that researchers strive to pursue.Based on this problem,this ...Although some numerical methods of the fractional-order chaotic systems have been announced,high-precision numerical methods have always been the direction that researchers strive to pursue.Based on this problem,this paper introduces a high-precision numerical approach.Some complex dynamic behavior of fractional-order Lorenz chaotic systems are shown by using the present method.We observe some novel dynamic behavior in numerical experiments which are unlike any that have been previously discovered in numerical experiments or theoretical studies.We investigate the influence of α_(1),α_(2),α_(3) on the numerical solution of fractional-order Lorenz chaotic systems.The simulation results of integer order are in good agreement with those of othermethods.The simulation results of numerical experiments demonstrate the effectiveness of the present method.展开更多
文摘This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.
基金supported by the Key Project of the Ministry of Education under Grant No.107099the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China under Grant No.L08010201JX0720
文摘Lorenz systems family unifying Lorenz system, Chen system and Lü system is a typical chaotic family. In this paper, we consider impulsive control Lorenz chaotic systems family with time-varying impulse intervals. By establishing an effective tool of a set of inequalities, we analyze the asymptotic stability of impulsive control Lorenz systems family and obtain some new less conservative conditions. Based on the stability analysis, we design a novel impulsive controller with time-varying impulse intervals. Illustrative examples are provided to show the feasibility and effectiveness of our method. The obtained results not only can be used to design impulsive control for Lorenz systems family, but also can be extended to other chaotic systems.
基金Supported partly by the National Natural Science Foundation of China (Grant Nos. 60474011 and 60274007)the National Natural Science Foun-dation of China for Excellent Youth (Grant No. 60325310)+2 种基金the Guangdong Province Science Foundation for Program of Research Team (Grant No. 04205783)the Natural Science Fund of Guangdong Province, China (Grant No. 05006508)the Natural Science and Engineering Re-search Council of Canada (Grant No. R2686A02)
文摘In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bounds are derived. The results presented in this paper contain all the existing results as special cases. In particular, the critical cases, b→ 1^+ and a→0^+, for which the previous methods failed, have been solved using a unified formula.
基金supported by the Natural Science Foundation of Inner Mongolia[2021MS01009]Jining Normal University[JSJY2021040,Jsbsjj1704,jsky202145].
文摘Although some numerical methods of the fractional-order chaotic systems have been announced,high-precision numerical methods have always been the direction that researchers strive to pursue.Based on this problem,this paper introduces a high-precision numerical approach.Some complex dynamic behavior of fractional-order Lorenz chaotic systems are shown by using the present method.We observe some novel dynamic behavior in numerical experiments which are unlike any that have been previously discovered in numerical experiments or theoretical studies.We investigate the influence of α_(1),α_(2),α_(3) on the numerical solution of fractional-order Lorenz chaotic systems.The simulation results of integer order are in good agreement with those of othermethods.The simulation results of numerical experiments demonstrate the effectiveness of the present method.