期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Co_(3)S_(4)-pyrolysis lotus fiber flexible textile as a hybrid electrocatalyst for overall water splitting
1
作者 Qiulan Zhou Zhen Liu +5 位作者 Xuxu Wang Yaqian Li Xin Qin Lijuan Guo Liwei Zhou Weijian Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期336-344,I0008,共10页
Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the e... Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS. 展开更多
关键词 Overall water splitting Hybrid electrocatalyst TEXTILE lotus fiber Co_(3)S_(4)nanoparticles
下载PDF
Bio-Adhesives Combined with Lotus Leaf Fiber to Prepare Bio-Composites for Substituting the Plastic Packaging Materials
2
作者 Ke Shi Luyang Wang +1 位作者 Ruige Qi Chunxia He 《Journal of Renewable Materials》 SCIE EI 2022年第5期1257-1268,共12页
This work was aim to prepare a packing material from natural resources to reduce the environment pollution caused by plastics.Four bio-adhesives(guar gum,sodium alginate,agar and chitosan)were combined with lotus leaf... This work was aim to prepare a packing material from natural resources to reduce the environment pollution caused by plastics.Four bio-adhesives(guar gum,sodium alginate,agar and chitosan)were combined with lotus leaf fibers to prepare degradable composites,respectively.The mechanical properties,moisture absorption profiles and the thermal conductivity of the composites were studied and the cross section morphology and the thermal properties of the composites were analyzed.The Fourier-transform infrared spectroscopy(FTIR)results showed that the polar groups such as–OH and–COO^(–)in bio-adhesives can form hydrogen bond with–OH in lotus leaf fibers to connect the two components.The combination of agar and lotus leaf fiber was good,and their composite had the best mechanical properties,with the tensile strength,flexural strength and impact strength of 2.05,5.9 MPa and 4.29 kJ·m_(−2),respectively,and the composite had a low moisture absorption profile,and the equilibrium moisture absorption rate was 32.32%.The lotus leaf fiber/agar composite(LAC)had an excellent comprehensive performance and it was non-toxic,degradable and thermal insulating,which indicated that it had the potential to use in packaging field to substitute plastics. 展开更多
关键词 Bio-adhesive lotus leaf fiber COMPOSITE mechanical properties MORPHOLOGY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部