In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offeri...In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.展开更多
The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to att...The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to attenuate the external radio-frequency field and keep the extremely sensitive detector, SQUID, working properly. A high-performance shielded room can increase the signal-to-noise ratio (SNR) and improve image quality. In this study, a circular coil with a diameter of 50 cm and a square coil with a side length of 2.0 m was used to simulate the magnetic fields from the nearby electric apparatuses and the distant environmental noise sources. The shielding effectivenesses (SE) of the shielded room with different thicknesses of aluminum sheets were calculated and simulated. A room using 6-mm-thick aluminum plates with a dimension of 1.5 m x 1.5 m x 2.0 m was then constructed. The SE was experimentally measured by using three-axis SQUID magnetometers, with tranisent magnetic field induced in the aluminum plates by the strong pre-polarization pulses. The results of the measured SE agreed with that from the simulation. In addition, the introduction of a 0.5-mm gap caused the obvious reduction of SE indicating the importance of door design. The nuclear magnetic resonance (NMR) signals of water at 5.9 kHz were measured in free space and in a shielded room, and the SNR was improved from 3 to 15. The simulation and experimental results will help us design an aluminum shielded room which satisfies the requirements for future ULF human brain imaging. Finally, the cancellation technique of the transient eddy current was tried, the simulation of the cancellation technique will lead us to finding an appropriate way to suppress the eddy current fields.展开更多
BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to...BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to predict preoperatively the need for multiple linear stapler cartridges during DST anastomosis.AIM To develop a deep learning model to predict multiple firings during DST anastomosis based on pelvic magnetic resonance imaging(MRI).METHODS We collected 9476 MR images from 328 mid-low rectal cancer patients undergoing LAR with DST anastomosis,which were randomly divided into a training set(n=260)and testing set(n=68).Binary logistic regression was adopted to create a clinical model using six factors.The sequence of fast spin-echo T2-weighted MRI of the entire pelvis was segmented and analyzed.Pure-image and clinical-image integrated deep learning models were constructed using the mask region-based convolutional neural network segmentation tool and three-dimensional convolutional networks.Sensitivity,specificity,accuracy,positive predictive value(PPV),and area under the receiver operating characteristic curve(AUC)was calculated for each model.RESULTS The prevalence of≥3 linear stapler cartridges was 17.7%(58/328).The prevalence of AL was statistically significantly higher in patients with≥3 cartridges compared to those with≤2 cartridges(25.0%vs 11.8%,P=0.018).Preoperative carcinoembryonic antigen level>5 ng/mL(OR=2.11,95%CI 1.08-4.12,P=0.028)and tumor size≥5 cm(OR=3.57,95%CI 1.61-7.89,P=0.002)were recognized as independent risk factors for use of≥3 linear stapler cartridges.Diagnostic performance was better with the integrated model(accuracy=94.1%,PPV=87.5%,and AUC=0.88)compared with the clinical model(accuracy=86.7%,PPV=38.9%,and AUC=0.72)and the image model(accuracy=91.2%,PPV=83.3%,and AUC=0.81).CONCLUSION MRI-based deep learning model can predict the use of≥3 linear stapler cartridges during DST anastomosis in laparoscopic LAR surgery.This model might help determine the best anastomosis strategy by avoiding DST when there is a high probability of the need for≥3 linear stapler cartridges.展开更多
Intervertebral disc degeneration and facet joint osteoarthritis of the lumbar spine are, among others, wellknown as a cause of low back and lower extremity pain. Together with their secondary disorders they set a big ...Intervertebral disc degeneration and facet joint osteoarthritis of the lumbar spine are, among others, wellknown as a cause of low back and lower extremity pain. Together with their secondary disorders they set a big burden on health care systems and economics worldwide. Despite modern imaging modalities, such as magnetic resonance imaging, for a large proportion of patients with low back pain(LBP) it remains difficult to provide a specific diagnosis. The fact that nearly all the lumbar structures are possible sources of LBP, may serve as a possible explanation. Furthermore, our clinical experience confirms, that imaging alone is not a sufficient approach explaining LBP. Here, the Oswestry Disability Index, as the most commonly used measure to quantify disability for LBP, may serve as an easy-toapply questionnaire to evaluate the patient's ability to cope with everyday life. For therapeutic purposes, among the different options, the lumbar facet joint intraarticular injection of corticosteroids in combination with an anaesthetic solution is one of the most frequently performed interventional procedures. Although widely used the clinical benefit of intra-articular steroid injections remains controversial. Therefore, prior to therapy, standardized diagnostic algorithms for an accurate assessment, classification and correlation of degenerative changes of the lumbar spine are needed.展开更多
In many ultrafast imaging applications, the reduced field-of-view(r FOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic ...In many ultrafast imaging applications, the reduced field-of-view(r FOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporallyencoded(SPEN) method offers an inherent applicability to r FOV imaging. In this study, a flexible r FOV imaging method is presented and the superiority of the SPEN approach in r FOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging(EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the r FOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest(ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging.展开更多
As quality and cost effectiveness become essential in clinical practice,an evidencebased evaluation of the utility of imaging orders becomes an important consideration for radiology’s value in patient care.We report ...As quality and cost effectiveness become essential in clinical practice,an evidencebased evaluation of the utility of imaging orders becomes an important consideration for radiology’s value in patient care.We report an institutional quality improvement project including a retrospective review of utility of sacrum magnetic resonance(MR)imaging for low back pain at our institution over a four-year period and follow-up results after physician education intervention.Sacral MR imaging for low back pain and tailbone pain were only positive for major findings in 2/98(2%)cases,and no major changes in patient management related to imaging findings occurred over this period,resulting in almost$500000 cost without significant patient benefit.We distributed these results to the Family Medicine department and clinics that frequently placed this order.An approximately 83%drop in ordering rate occurred over the ensuing 3 mo follow-up period.Sacrum MR imaging for low back pain and tail bone pain has not been a cost-effective diagnostic tool at our institution.Physician education was a useful tool in reducing overutilization of this study,with a remarkable drop in such studies after sharing these findings with primary care physicians at the institution.In conclusion,sacrum MR imaging rarely elucidates the cause of low back/tail pain diagnosed in a primary care setting and is even less likely to result in major changes in management.The practice can be adopted in other institutions for the benefit of their patients and improve cost efficiency.展开更多
In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic r...In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic resonance imaging(MRI)reconstruction is proposed,which reconstructs the image from highly under-sampled k-space data.In the algorithm,the nonconvex surrogate function replacing the conventional nuclear norm is utilized to enhance the low-rank property inherent in the reconstructed image.An alternative direction multiplier method(ADMM) is applied to solving the resulting non-convex model.Extensive experimental results have demonstrated that the proposed method can consistently recover MRIs efficiently,and outperforms the current state-of-the-art approaches in terms of higher peak signal-to-noise ratio(PSNR) and lower high-frequency error norm(HFEN) values.展开更多
Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.unifo...Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI.展开更多
AIM To assess the correlation of lateral recess stenosis(LRS) of lumbar segments L4/5 and L5/S1 and the Oswestry Disability Index(ODI).METHODS Nine hundred and twenty-seven patients with history of low back pain were ...AIM To assess the correlation of lateral recess stenosis(LRS) of lumbar segments L4/5 and L5/S1 and the Oswestry Disability Index(ODI).METHODS Nine hundred and twenty-seven patients with history of low back pain were included in this uncontrolled study.On magnetic resonance images(MRI) the lateral recesses(LR) at lumbar levels L4/5 and L5/S1 were evaluated and each nerve root was classified into a 4-point grading scale(Grade 0-3) as normal,not deviated,deviated or compressed.Patient symptoms and disability were assessed using ODI.The Spearman's rank correlation coefficient was used for statistical analysis(P < 0.05).RESULTS Approximately half of the LR revealed stenosis(grade 1-3;52% at level L4/5 and 42% at level L5/S1) with 2.2% and 1.9% respectively reveal a nerve root compression.The ODI score ranged from 0%-91.11% with an arithmetic mean of 34.06% ± 16.89%.We observed a very weak statistically significant positive correlation between ODI and LRS at lumbar levels L4/5 and L5/S1,each bilaterally(L4/5 left:rho < 0.105,P < 0.01;L4/5 right:rho < 0.111,P < 0.01;L5/S1 left:rho 0.128,P < 0.01;L5/S1 right:rho < 0.157,P < 0.001).CONCLUSION Although MRI is the standard imaging tool for diagnosing lumbar spinal stenosis,this study showed only a weak correlation of LRS on MRI and clinical findings.This can be attributed to a number of reasons outlined in this study,underlining that imaging findings alone are not sufficient to establish a reliable diagnosis for patients with LRS.展开更多
AIM: To investigate whether congenital lumbar spinal stenosis(CLSS) is associated with a specific degenerative changes of the lumbar spine. METHODS: The lumbar spine magnetic resonance imaging studies of 52 subjects w...AIM: To investigate whether congenital lumbar spinal stenosis(CLSS) is associated with a specific degenerative changes of the lumbar spine. METHODS: The lumbar spine magnetic resonance imaging studies of 52 subjects with CLSS and 48 control subjects were retrospectively evaluated. In each examination, the five lumbar levels were assessed for the presence or absence of circumferential or shallow annular bulges, annular tears, anterior or posterior disc herniations, epidural lipomatosis, Schmorl's nodes,spondylolisthesis, pars defects, and stress reactions of the posterior vertebral elements. RESULTS: Compared to control individuals, subjects with CLSS exhibited increased incidence of circumferential and shallow annular bulges, annular tears, discherniations and spondylolisthesis(P < 0.05). CONCLUSION: CLSS is associated with increased incidence of degenerative changes in specific osseous and soft-tissue elements of the lumbar spine.展开更多
Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its ph...Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.展开更多
BACKGROUND The response to axial physiological pressure due to load transfer to the lumbar spine structures is among the various back pain mechanisms.Understanding the spine adaptation to cumulative compressive forces...BACKGROUND The response to axial physiological pressure due to load transfer to the lumbar spine structures is among the various back pain mechanisms.Understanding the spine adaptation to cumulative compressive forces can influence the choice of personalized treatment strategies.AIM To analyze the impact of axial load on the spinal canal’s size,intervertebral foramina,ligamenta flava and lumbosacral alignment.METHODS We assessed 90 patients using three-dimensional isotropic magnetic resonance imaging acquisition in a supine position with or without applying an axial compression load.Anatomical structures were measured in the lumbosacral region from L1 to S1 in lying and axially-loaded magnetic resonance images.A paired t test atα=0.05 was used to calculate the observed differences.RESULTS After axial loading,the dural sac area decreased significantly,by 5.2%on average(4.1%,6.2%,P<0.001).The intervertebral foramina decreased by 3.4%(2.7%,4.1%,P<0.001),except for L5-S1.Ligamenta flava increased by 3.8%(2.5%,5.2%,P<0.001),and the lumbosacral angle increased.CONCLUSION Axial load exacerbates the narrowing of the spinal canal and intervertebral foramina from L1-L2 to L4-L5.Cumulative compressive forces thicken ligamenta flava and exaggerate lumbar lordosis.展开更多
This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current li...This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current limitations are highlighted.Based on the first promising studies,potential clinical applications at 7 Tesla are suggested.Other aims are to stimulate awareness of the potential of ultra-high field magnetic resonance and to stimulate active participation in much needed basic or clinical research at 7 Tesla or higher.展开更多
This paper analyses the heteronuclear Cosy Revamped by Asymmetric Z-gradient Echo Detection pulse sequence. General theoretical expressions of the pulse sequence with arbitrary flip angles were derived by using dipola...This paper analyses the heteronuclear Cosy Revamped by Asymmetric Z-gradient Echo Detection pulse sequence. General theoretical expressions of the pulse sequence with arbitrary flip angles were derived by using dipolar field treatment and signals originating from heteronuclear intermolecular single-quantum coherences (iSQCs) in highly-polarized two spin-1/2 systems were mainly discussed in order to find the optimal flip angles. The results show that signals from heteronuclear iSQCs decay slower than those from intermolecular double-quantum coherences or intermolecular zero-quantum coherences. Magical angle experiments validate that the signals are from heteronuclear iSQCs and insensitive to the imperfection of radio-frequency flip angles. All experimental observations are in excellent agreement with theoretical predictions. The quantum-mechanical treatment leads to similar predictions to the dipolar field treatment.展开更多
Significant high magnetic gradient field strength is essential to obtaining high-resolution images in a benchtop mag- netic resonance imaging (BT-MRI) system with permanent magnet. Extending minimum wire spacing and...Significant high magnetic gradient field strength is essential to obtaining high-resolution images in a benchtop mag- netic resonance imaging (BT-MRI) system with permanent magnet. Extending minimum wire spacing and maximum wire width of gradient coils is one of the key solutions to minimize the maximum current density so as to reduce the local heating and generate higher magnetic field gradient strength. However, maximum current density is hard to optimize together with field linearity, stored magnetic energy, and power dissipation by the traditional target field method. In this paper, a new multi-objective method is proposed to optimize the maximum current density, field linearity, stored magnetic energy, and power dissipation in MRI gradient coils. The simulation and experimental results show that the minimum wire spacings are improved by 159% and 62% for the transverse and longitudinal gradient coil respectively. The maximum wire width increases from 0.5 mm to 1.5 mm. Maximum gradient field strengths of 157 mT/m and 405 mT/m for transverse and lon- gitudinal coil are achieved, respectively. The experimental results in BT-MRI instrument demonstrate that the MRI images with in-plane resolution of 50 ~tm can be obtained by using the designed coils.展开更多
Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity...Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity of the NMR signal, and more importantly, can induce novel phenomena. In this article, examples are given on the field-induced charge density wave (CDW) in high-To superconductors and on the studies of quantum spin liquids. We provide a brief introduction to the high magnetic field NMR platform, the station 4 of the Synergetic Extreme Condition User Facility (SECUF), being built at Huairou, Beijing.展开更多
3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain...3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.展开更多
Multiple sclerosis is associated with structural and functional brain alterations leading to cognitive impairments across multiple domains including attention,memory,and the speed of information processing.The hippoca...Multiple sclerosis is associated with structural and functional brain alterations leading to cognitive impairments across multiple domains including attention,memory,and the speed of information processing.The hippocampus,which is a brain important structure involved in memory,undergoes microstructural changes in the early stage of multiple sclerosis.In this study,we analyzed hippocampal function and structure in patients with relapsing-remitting multiple sclerosis and explored correlations between the functional connectivity of the hippocampus to the whole brain,changes in local brain function and microstructure,and cognitive function at rest.We retrospectively analyzed data from 20 relapsing-remitting multiple sclerosis patients admitted to the Department of Neurology at the China-Japan Union Hospital of Jilin University,China,from April 2015 to November 2019.Sixteen healthy volunteers were recruited as the healthy control group.All participants were evaluated using a scale of extended disability status and the Montreal cognitive assessment within 1 week before and after head diffusion tensor imaging and functional magnetic resonance imaging.Compared with the healthy control group,the patients with relapsing-remitting multiple sclerosis had lower Montreal cognitive assessment scores and regions of simultaneously enhanced and attenuated whole-brain functional connectivity and local functional connectivity in the bilateral hippocampus.Hippocampal diffusion tensor imaging data showed that,compared with the healthy control group,patients with relapsing-remitting multiple sclerosis had lower hippocampal fractional anisotropy values and higher mean diffusivity values,suggesting abnormal hippocampal structure.The left hippocampus whole-brain functional connectivity was negatively correlated with the Montreal cognitive assessment score(r=-0.698,P=0.025),and whole-brain functional connectivity of the right hippocampus was negatively correlated with extended disability status scale score(r=-0.649,P=0.042).The mean diffusivity value of the left hippocampus was negatively correlated with the Montreal cognitive assessment score(r=-0.729,P=0.017)and positively correlated with the extended disability status scale score(r=0.653,P=0.041).The right hippocampal mean diffusivity value was positively correlated with the extended disability status scale score(r=0.684,P=0.029).These data suggest that the functional connectivity and presence of structural abnormalities in the hippocampus in patients with relapse-remission multiple sclerosis are correlated with the degree of cognitive function and extent of disability.This study was approved by the Ethics Committee of China-Japan Union Hospital of Jilin University,China(approval No.201702202)on February 22,2017.展开更多
Internet addiction is associated with an increased risk of suicidal behavior and can lead to brain dysfunction among adolescents.However,whether brain dysfunction occurs in adolescents with Internet addiction who atte...Internet addiction is associated with an increased risk of suicidal behavior and can lead to brain dysfunction among adolescents.However,whether brain dysfunction occurs in adolescents with Internet addiction who attempt suicide remains unknown.This observational cross-sectional study enrolled 41 young Internet addicts,aged from 15 to 20 years,from the Department of Psychiatry,the First Affiliated Hospital of Chongqing Medical University,China from January to May 2018.The participants included 21 individuals who attempted suicide and 20 individuals with Internet addiction without a suicidal attempt history.Brain images in the resting state were obtained by a 3.0 T magnetic resonance imaging scanner.The results showed that activity in the gyrus frontalis inferior of the right pars triangularis and the right pars opercularis was significantly increased in the suicidal attempt group compared with the non-suicidal attempt group.In the resting state,the prefrontal lobe of adolescents who had attempted suicide because of Internet addiction exhibited functional abnormalities,which may provide a new basis for studying suicide pathogenesis in Internet addicts.The study was authorized by the Ethics Committee of Chongqing Medical University,China(approval No.2017 Scientific Research Ethics(2017-157))on December 11,2017.展开更多
An ever-increasing number of 3.0 Tesla(T) magnets are installed worldwide. Moving from the standard of 1.5 T to higher field strength implies a number of potential advantage and drawbacks, requiring careful optimizati...An ever-increasing number of 3.0 Tesla(T) magnets are installed worldwide. Moving from the standard of 1.5 T to higher field strength implies a number of potential advantage and drawbacks, requiring careful optimization of imaging protocols or implementation of novel hardware components. Clinical practice and literature review suggest that state-of-the-art 3.0 T is equivalent to 1.5 T in the assessment of focal liver lesions and diffuse liver disease. Therefore, further technical improvements are needed in order to fully exploit the potential of higher field strength.展开更多
基金supported by start-up funds from the laboratory of H.WFaculty Sponsored Student Research Awards(FSSRA)from the Department of Chemistry and Biochemistry in the College of Science and Mathematics at California State University,Fresno。
文摘In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.
基金Project supported in part by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04020200)in part by the National Natural Science Foundation of China(Grant No.11204339)
文摘The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to attenuate the external radio-frequency field and keep the extremely sensitive detector, SQUID, working properly. A high-performance shielded room can increase the signal-to-noise ratio (SNR) and improve image quality. In this study, a circular coil with a diameter of 50 cm and a square coil with a side length of 2.0 m was used to simulate the magnetic fields from the nearby electric apparatuses and the distant environmental noise sources. The shielding effectivenesses (SE) of the shielded room with different thicknesses of aluminum sheets were calculated and simulated. A room using 6-mm-thick aluminum plates with a dimension of 1.5 m x 1.5 m x 2.0 m was then constructed. The SE was experimentally measured by using three-axis SQUID magnetometers, with tranisent magnetic field induced in the aluminum plates by the strong pre-polarization pulses. The results of the measured SE agreed with that from the simulation. In addition, the introduction of a 0.5-mm gap caused the obvious reduction of SE indicating the importance of door design. The nuclear magnetic resonance (NMR) signals of water at 5.9 kHz were measured in free space and in a shielded room, and the SNR was improved from 3 to 15. The simulation and experimental results will help us design an aluminum shielded room which satisfies the requirements for future ULF human brain imaging. Finally, the cancellation technique of the transient eddy current was tried, the simulation of the cancellation technique will lead us to finding an appropriate way to suppress the eddy current fields.
基金Shanghai Jiaotong University,No.YG2019QNB24This study was reviewed and approved by Ruijin Hospital Ethics Committee(Approval No.2019-82).
文摘BACKGROUND Multiple linear stapler firings during double stapling technique(DST)after laparoscopic low anterior resection(LAR)are associated with an increased risk of anastomotic leakage(AL).However,it is difficult to predict preoperatively the need for multiple linear stapler cartridges during DST anastomosis.AIM To develop a deep learning model to predict multiple firings during DST anastomosis based on pelvic magnetic resonance imaging(MRI).METHODS We collected 9476 MR images from 328 mid-low rectal cancer patients undergoing LAR with DST anastomosis,which were randomly divided into a training set(n=260)and testing set(n=68).Binary logistic regression was adopted to create a clinical model using six factors.The sequence of fast spin-echo T2-weighted MRI of the entire pelvis was segmented and analyzed.Pure-image and clinical-image integrated deep learning models were constructed using the mask region-based convolutional neural network segmentation tool and three-dimensional convolutional networks.Sensitivity,specificity,accuracy,positive predictive value(PPV),and area under the receiver operating characteristic curve(AUC)was calculated for each model.RESULTS The prevalence of≥3 linear stapler cartridges was 17.7%(58/328).The prevalence of AL was statistically significantly higher in patients with≥3 cartridges compared to those with≤2 cartridges(25.0%vs 11.8%,P=0.018).Preoperative carcinoembryonic antigen level>5 ng/mL(OR=2.11,95%CI 1.08-4.12,P=0.028)and tumor size≥5 cm(OR=3.57,95%CI 1.61-7.89,P=0.002)were recognized as independent risk factors for use of≥3 linear stapler cartridges.Diagnostic performance was better with the integrated model(accuracy=94.1%,PPV=87.5%,and AUC=0.88)compared with the clinical model(accuracy=86.7%,PPV=38.9%,and AUC=0.72)and the image model(accuracy=91.2%,PPV=83.3%,and AUC=0.81).CONCLUSION MRI-based deep learning model can predict the use of≥3 linear stapler cartridges during DST anastomosis in laparoscopic LAR surgery.This model might help determine the best anastomosis strategy by avoiding DST when there is a high probability of the need for≥3 linear stapler cartridges.
文摘Intervertebral disc degeneration and facet joint osteoarthritis of the lumbar spine are, among others, wellknown as a cause of low back and lower extremity pain. Together with their secondary disorders they set a big burden on health care systems and economics worldwide. Despite modern imaging modalities, such as magnetic resonance imaging, for a large proportion of patients with low back pain(LBP) it remains difficult to provide a specific diagnosis. The fact that nearly all the lumbar structures are possible sources of LBP, may serve as a possible explanation. Furthermore, our clinical experience confirms, that imaging alone is not a sufficient approach explaining LBP. Here, the Oswestry Disability Index, as the most commonly used measure to quantify disability for LBP, may serve as an easy-toapply questionnaire to evaluate the patient's ability to cope with everyday life. For therapeutic purposes, among the different options, the lumbar facet joint intraarticular injection of corticosteroids in combination with an anaesthetic solution is one of the most frequently performed interventional procedures. Although widely used the clinical benefit of intra-articular steroid injections remains controversial. Therefore, prior to therapy, standardized diagnostic algorithms for an accurate assessment, classification and correlation of degenerative changes of the lumbar spine are needed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474236,81171331,and U1232212)
文摘In many ultrafast imaging applications, the reduced field-of-view(r FOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporallyencoded(SPEN) method offers an inherent applicability to r FOV imaging. In this study, a flexible r FOV imaging method is presented and the superiority of the SPEN approach in r FOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging(EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the r FOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest(ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging.
文摘As quality and cost effectiveness become essential in clinical practice,an evidencebased evaluation of the utility of imaging orders becomes an important consideration for radiology’s value in patient care.We report an institutional quality improvement project including a retrospective review of utility of sacrum magnetic resonance(MR)imaging for low back pain at our institution over a four-year period and follow-up results after physician education intervention.Sacral MR imaging for low back pain and tailbone pain were only positive for major findings in 2/98(2%)cases,and no major changes in patient management related to imaging findings occurred over this period,resulting in almost$500000 cost without significant patient benefit.We distributed these results to the Family Medicine department and clinics that frequently placed this order.An approximately 83%drop in ordering rate occurred over the ensuing 3 mo follow-up period.Sacrum MR imaging for low back pain and tail bone pain has not been a cost-effective diagnostic tool at our institution.Physician education was a useful tool in reducing overutilization of this study,with a remarkable drop in such studies after sharing these findings with primary care physicians at the institution.In conclusion,sacrum MR imaging rarely elucidates the cause of low back/tail pain diagnosed in a primary care setting and is even less likely to result in major changes in management.The practice can be adopted in other institutions for the benefit of their patients and improve cost efficiency.
基金National Natural Science Foundations of China(Nos.61362001,61365013,51165033)the Science and Technology Department of Jiangxi Province of China(Nos.20132BAB211030,20122BAB211015)+1 种基金the Jiangxi Advanced Projects for Postdoctoral Research Funds,China(o.2014KY02)the Innovation Special Fund Project of Nanchang University,China(o.cx2015136)
文摘In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic resonance imaging(MRI)reconstruction is proposed,which reconstructs the image from highly under-sampled k-space data.In the algorithm,the nonconvex surrogate function replacing the conventional nuclear norm is utilized to enhance the low-rank property inherent in the reconstructed image.An alternative direction multiplier method(ADMM) is applied to solving the resulting non-convex model.Extensive experimental results have demonstrated that the proposed method can consistently recover MRIs efficiently,and outperforms the current state-of-the-art approaches in terms of higher peak signal-to-noise ratio(PSNR) and lower high-frequency error norm(HFEN) values.
基金supported by the National Natural Science Foundation of China (U21A20148, 31900506, 52007185)International Partnership Program of the Chinese Academy of Sciences(116134KYSB20210052)+2 种基金Heye Health Technology Chong Ming Project(HYCMP2021010)CAS President’s International Fellowship Initiative Grant(2022VMA0009)CASHIPS Director’s Fund (BJPY2021A06,2021YZGH04, YZJJ2020QN26, YZJJZX202014, YZJJ2021QN32,YZJJ2023QN43)。
文摘Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI.
文摘AIM To assess the correlation of lateral recess stenosis(LRS) of lumbar segments L4/5 and L5/S1 and the Oswestry Disability Index(ODI).METHODS Nine hundred and twenty-seven patients with history of low back pain were included in this uncontrolled study.On magnetic resonance images(MRI) the lateral recesses(LR) at lumbar levels L4/5 and L5/S1 were evaluated and each nerve root was classified into a 4-point grading scale(Grade 0-3) as normal,not deviated,deviated or compressed.Patient symptoms and disability were assessed using ODI.The Spearman's rank correlation coefficient was used for statistical analysis(P < 0.05).RESULTS Approximately half of the LR revealed stenosis(grade 1-3;52% at level L4/5 and 42% at level L5/S1) with 2.2% and 1.9% respectively reveal a nerve root compression.The ODI score ranged from 0%-91.11% with an arithmetic mean of 34.06% ± 16.89%.We observed a very weak statistically significant positive correlation between ODI and LRS at lumbar levels L4/5 and L5/S1,each bilaterally(L4/5 left:rho < 0.105,P < 0.01;L4/5 right:rho < 0.111,P < 0.01;L5/S1 left:rho 0.128,P < 0.01;L5/S1 right:rho < 0.157,P < 0.001).CONCLUSION Although MRI is the standard imaging tool for diagnosing lumbar spinal stenosis,this study showed only a weak correlation of LRS on MRI and clinical findings.This can be attributed to a number of reasons outlined in this study,underlining that imaging findings alone are not sufficient to establish a reliable diagnosis for patients with LRS.
文摘AIM: To investigate whether congenital lumbar spinal stenosis(CLSS) is associated with a specific degenerative changes of the lumbar spine. METHODS: The lumbar spine magnetic resonance imaging studies of 52 subjects with CLSS and 48 control subjects were retrospectively evaluated. In each examination, the five lumbar levels were assessed for the presence or absence of circumferential or shallow annular bulges, annular tears, anterior or posterior disc herniations, epidural lipomatosis, Schmorl's nodes,spondylolisthesis, pars defects, and stress reactions of the posterior vertebral elements. RESULTS: Compared to control individuals, subjects with CLSS exhibited increased incidence of circumferential and shallow annular bulges, annular tears, discherniations and spondylolisthesis(P < 0.05). CONCLUSION: CLSS is associated with increased incidence of degenerative changes in specific osseous and soft-tissue elements of the lumbar spine.
基金supported by the Open Research Fund of State Key Laboratory of Geomechanics and GeotechnicalEngineering, IRSM, CAS (Grant No. Z017002)the National Natural Science Foundation of China (Grant Nos. 41872210 and 41274111)financial support from the China-Australia Geological Storage of CO_2 (CAGS) Project funded by the Australian Government under the auspices of the China-Australia Joint Coordination Group on Clean Coal Technology
文摘Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.
文摘BACKGROUND The response to axial physiological pressure due to load transfer to the lumbar spine structures is among the various back pain mechanisms.Understanding the spine adaptation to cumulative compressive forces can influence the choice of personalized treatment strategies.AIM To analyze the impact of axial load on the spinal canal’s size,intervertebral foramina,ligamenta flava and lumbosacral alignment.METHODS We assessed 90 patients using three-dimensional isotropic magnetic resonance imaging acquisition in a supine position with or without applying an axial compression load.Anatomical structures were measured in the lumbosacral region from L1 to S1 in lying and axially-loaded magnetic resonance images.A paired t test atα=0.05 was used to calculate the observed differences.RESULTS After axial loading,the dural sac area decreased significantly,by 5.2%on average(4.1%,6.2%,P<0.001).The intervertebral foramina decreased by 3.4%(2.7%,4.1%,P<0.001),except for L5-S1.Ligamenta flava increased by 3.8%(2.5%,5.2%,P<0.001),and the lumbosacral angle increased.CONCLUSION Axial load exacerbates the narrowing of the spinal canal and intervertebral foramina from L1-L2 to L4-L5.Cumulative compressive forces thicken ligamenta flava and exaggerate lumbar lordosis.
文摘This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current limitations are highlighted.Based on the first promising studies,potential clinical applications at 7 Tesla are suggested.Other aims are to stimulate awareness of the potential of ultra-high field magnetic resonance and to stimulate active participation in much needed basic or clinical research at 7 Tesla or higher.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 20573084 and 10575085)the Nation Science Foundation of Fujian,China(Grant No A0610005)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘This paper analyses the heteronuclear Cosy Revamped by Asymmetric Z-gradient Echo Detection pulse sequence. General theoretical expressions of the pulse sequence with arbitrary flip angles were derived by using dipolar field treatment and signals originating from heteronuclear intermolecular single-quantum coherences (iSQCs) in highly-polarized two spin-1/2 systems were mainly discussed in order to find the optimal flip angles. The results show that signals from heteronuclear iSQCs decay slower than those from intermolecular double-quantum coherences or intermolecular zero-quantum coherences. Magical angle experiments validate that the signals are from heteronuclear iSQCs and insensitive to the imperfection of radio-frequency flip angles. All experimental observations are in excellent agreement with theoretical predictions. The quantum-mechanical treatment leads to similar predictions to the dipolar field treatment.
基金Project supported by the Natural Science Foundation of the Ministry of Science and Technology of China (Grant No.2011ZX05008004)the Science Fund of the Committee of Science and Technology of Beijing,China
文摘Significant high magnetic gradient field strength is essential to obtaining high-resolution images in a benchtop mag- netic resonance imaging (BT-MRI) system with permanent magnet. Extending minimum wire spacing and maximum wire width of gradient coils is one of the key solutions to minimize the maximum current density so as to reduce the local heating and generate higher magnetic field gradient strength. However, maximum current density is hard to optimize together with field linearity, stored magnetic energy, and power dissipation by the traditional target field method. In this paper, a new multi-objective method is proposed to optimize the maximum current density, field linearity, stored magnetic energy, and power dissipation in MRI gradient coils. The simulation and experimental results show that the minimum wire spacings are improved by 159% and 62% for the transverse and longitudinal gradient coil respectively. The maximum wire width increases from 0.5 mm to 1.5 mm. Maximum gradient field strengths of 157 mT/m and 405 mT/m for transverse and lon- gitudinal coil are achieved, respectively. The experimental results in BT-MRI instrument demonstrate that the MRI images with in-plane resolution of 50 ~tm can be obtained by using the designed coils.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07020200)the National Key Research and Development Program of China(Grant Nos.2016YFA0300502 and 2015CB921304)the National Natural Science Foundation of China(Grant No.11634015)
文摘Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity of the NMR signal, and more importantly, can induce novel phenomena. In this article, examples are given on the field-induced charge density wave (CDW) in high-To superconductors and on the studies of quantum spin liquids. We provide a brief introduction to the high magnetic field NMR platform, the station 4 of the Synergetic Extreme Condition User Facility (SECUF), being built at Huairou, Beijing.
基金supported by the National Natural Science Foundation of China,No.81141013a grant for Talents in Beijing,No.2011D003034000019
文摘3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.
基金supported by the Project of International Cooperation of Jilin Province in China,No.20180414062GH(to XMH)Health research talents Project of Jilin Province in China,No.2019sc2018(to XMH)。
文摘Multiple sclerosis is associated with structural and functional brain alterations leading to cognitive impairments across multiple domains including attention,memory,and the speed of information processing.The hippocampus,which is a brain important structure involved in memory,undergoes microstructural changes in the early stage of multiple sclerosis.In this study,we analyzed hippocampal function and structure in patients with relapsing-remitting multiple sclerosis and explored correlations between the functional connectivity of the hippocampus to the whole brain,changes in local brain function and microstructure,and cognitive function at rest.We retrospectively analyzed data from 20 relapsing-remitting multiple sclerosis patients admitted to the Department of Neurology at the China-Japan Union Hospital of Jilin University,China,from April 2015 to November 2019.Sixteen healthy volunteers were recruited as the healthy control group.All participants were evaluated using a scale of extended disability status and the Montreal cognitive assessment within 1 week before and after head diffusion tensor imaging and functional magnetic resonance imaging.Compared with the healthy control group,the patients with relapsing-remitting multiple sclerosis had lower Montreal cognitive assessment scores and regions of simultaneously enhanced and attenuated whole-brain functional connectivity and local functional connectivity in the bilateral hippocampus.Hippocampal diffusion tensor imaging data showed that,compared with the healthy control group,patients with relapsing-remitting multiple sclerosis had lower hippocampal fractional anisotropy values and higher mean diffusivity values,suggesting abnormal hippocampal structure.The left hippocampus whole-brain functional connectivity was negatively correlated with the Montreal cognitive assessment score(r=-0.698,P=0.025),and whole-brain functional connectivity of the right hippocampus was negatively correlated with extended disability status scale score(r=-0.649,P=0.042).The mean diffusivity value of the left hippocampus was negatively correlated with the Montreal cognitive assessment score(r=-0.729,P=0.017)and positively correlated with the extended disability status scale score(r=0.653,P=0.041).The right hippocampal mean diffusivity value was positively correlated with the extended disability status scale score(r=0.684,P=0.029).These data suggest that the functional connectivity and presence of structural abnormalities in the hippocampus in patients with relapse-remission multiple sclerosis are correlated with the degree of cognitive function and extent of disability.This study was approved by the Ethics Committee of China-Japan Union Hospital of Jilin University,China(approval No.201702202)on February 22,2017.
基金supported by a grant from Chongqing Science and Technology Commission of China,Nos.CSTC2018jxj1130009,cstc2019 jscx-msxmX0279(both to YH)the Traditional Chinese Medicine Scientific Research Fund from Chongqing Health Committee of China,No.2019ZY023315(to YH)
文摘Internet addiction is associated with an increased risk of suicidal behavior and can lead to brain dysfunction among adolescents.However,whether brain dysfunction occurs in adolescents with Internet addiction who attempt suicide remains unknown.This observational cross-sectional study enrolled 41 young Internet addicts,aged from 15 to 20 years,from the Department of Psychiatry,the First Affiliated Hospital of Chongqing Medical University,China from January to May 2018.The participants included 21 individuals who attempted suicide and 20 individuals with Internet addiction without a suicidal attempt history.Brain images in the resting state were obtained by a 3.0 T magnetic resonance imaging scanner.The results showed that activity in the gyrus frontalis inferior of the right pars triangularis and the right pars opercularis was significantly increased in the suicidal attempt group compared with the non-suicidal attempt group.In the resting state,the prefrontal lobe of adolescents who had attempted suicide because of Internet addiction exhibited functional abnormalities,which may provide a new basis for studying suicide pathogenesis in Internet addicts.The study was authorized by the Ethics Committee of Chongqing Medical University,China(approval No.2017 Scientific Research Ethics(2017-157))on December 11,2017.
文摘An ever-increasing number of 3.0 Tesla(T) magnets are installed worldwide. Moving from the standard of 1.5 T to higher field strength implies a number of potential advantage and drawbacks, requiring careful optimization of imaging protocols or implementation of novel hardware components. Clinical practice and literature review suggest that state-of-the-art 3.0 T is equivalent to 1.5 T in the assessment of focal liver lesions and diffuse liver disease. Therefore, further technical improvements are needed in order to fully exploit the potential of higher field strength.