期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:1
1
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect low permeability reservoir Enhanced oil recovery
下载PDF
A novel profile modification HPF-Co gel satisfied with fractured low permeability reservoirs in high temperature and high salinity
2
作者 Ya-Kai Li Ji-Rui Hou +6 位作者 Wei-Peng Wu Ming Qu Tuo Liang Wei-Xin Zhong Yu-Chen Wen Hai-Tong Sun Yi-Nuo Pan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期683-693,共11页
Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi... Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%. 展开更多
关键词 low permeability reservoir High-temperature resistant gel Complexation reaction Polymer gel injection strategy Plugging rate Enhanced oil recovery
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
3
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 low permeability porous media Water-oil flow WETTABILITY Pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
4
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
An overview of efficient development practices at low permeability sandstone reservoirs in China 被引量:1
5
作者 Bingyu Ji Jichao Fang 《Energy Geoscience》 2023年第3期149-157,共9页
Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditio... Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs. 展开更多
关键词 Well pattern FRACTURING Development model Reservoir description low permeability reservoir
下载PDF
Experimental study of the mechanism of nanofluid in enhancing the oil recovery in low permeability reservoirs using microfluidics
6
作者 Kang Wang Qing You +2 位作者 Qiu-Ming Long Biao Zhou Pan Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期382-395,共14页
Due to the low porosity and low permeability in unconventional reservoirs,a large amount of crude oil is trapped in micro-to nano-sized pores and throats,which leads to low oil recovery.Nanofluids have great potential... Due to the low porosity and low permeability in unconventional reservoirs,a large amount of crude oil is trapped in micro-to nano-sized pores and throats,which leads to low oil recovery.Nanofluids have great potential to enhance oil recovery(EOR)in low permeability reservoirs.In this work,the regulating ability of a nanofluid at the oil/water/solid three-phase interface was explored.The results indicated that the nanofluid reduced the oil/water interfacial tension by two orders of magnitude,and the expansion modulus of oil/water interface was increased by 77% at equilibrium.In addition,the solid surface roughness was reduced by 50%,and the three-phase contact angle dropped from 135(oil-wet)to 48(water-wet).Combining the displacement experiments using a 2.5D reservoir micromodel and a microchannel model,the remaining oil mobilization and migration processes in micro-to nano-scale pores and throats were visualized.It was found that the nanofluid dispersed the remaining oil into small oil droplets and displaced them via multiple mechanisms in porous media.Moreover,the high strength interface film formed by the nanofluid inhibited the coalescence of oil droplets and improved the flowing ability.These results help to understand the EOR mechanisms of nanofluids in low permeability reservoirs from a visual perspective. 展开更多
关键词 NANOFLUID EOR mechanism MICROMODEL low permeability Three-phase interface
下载PDF
Pilot Test for Nitrogen Foam Flooding in Low Permeability Reservoir
7
作者 Xinyu Zhou Jia Huang +5 位作者 Yuchen Qian Wenli Luo Lisha Qi Jie Wang Zhibin Jiang Hao Kang 《Energy Engineering》 EI 2023年第3期763-774,共12页
Due to the characteristics of reservoir formation,the producing level of low permeability reservoir is relatively very low.It is hard to obtain high recovery through conventional development schemes.Considering the ti... Due to the characteristics of reservoir formation,the producing level of low permeability reservoir is relatively very low.It is hard to obtain high recovery through conventional development schemes.Considering the tight matrix,complex fracture system,low production level of producers,and low recovery factor ofMblock in Xinjiang oilfield,it is selected for on-site pilot test of nitrogen foam flooding.Detailed flooding scheme is made and the test results are evaluated respectively both for producers and injectors.The pressure index,filling degree,and fluid injection profile are found to be all improved in injectors after injection of nitrogen foam.The oil production,water cut and liquid production file are also improved in most of the producers,with the natural decline rate in the test area become slow.Results show that nitrogen foam flooding technology can be good technical storage for enhanced oil recovery in low permeability reservoir. 展开更多
关键词 Fluid production profile nitrogen foam low permeability pilot test
下载PDF
Research on Well Testing Interpretation of Low Permeability Deformed Dual Medium Reservoir
8
作者 Meinan Wang Yue Xie +2 位作者 Rui Zhang Guohao Zhang Jianguo Liu 《Open Journal of Applied Sciences》 2023年第11期2141-2148,共8页
Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and esta... Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”. 展开更多
关键词 low permeability Oil Reservoirs Deformation Medium Dual Media Cross Flow Coefficient Well Testing Interpretation Model
下载PDF
Pore network modeling of water block in low permeability reservoirs 被引量:11
9
作者 Shao Changjin Yang Zhenqing Zhou Guanggang Lu Guiwu 《Petroleum Science》 SCIE CAS CSCD 2010年第3期362-366,共5页
A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relati... A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relative permeability number' (RPN) was firstly defined, and then used to describe the degree of water block. Imbibition process simulations show that the RPN drops in accordance with the extension of the averaged pore throat radius from 0.05 to 1.5 μm, and yet once beyond that point of 1.5 μm, the RPN reaches a higher value, indicating the existence of a critical pore throat radius where water block is the maximum. When the wettability of the samples changes from water-wet to weakly water-wet, weakly gas-wet, or gas(oil)-wet, the gas RPN increases consistently, but this consistency is disturbed by the RPN dropping for weakly water-wet samples for water saturations less than 0.4, which means weakly waterwet media are more easily water blocked than water-wet systems. In the situation where the initial water saturation exceeds 0.05, water block escalates along with an increase in initial water saturation. 展开更多
关键词 Pore-network model water block relative permeability number low permeability wettability
下载PDF
The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs:a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie 被引量:10
10
作者 Tian Yang Ying-Chang Cao +4 位作者 Yan-Zhong Wang Henrik Friis Beyene Girma Haile Ke-Lai Xi Hui-Na Zhang 《Petroleum Science》 SCIE CAS CSCD 2016年第2期204-224,共21页
The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeabilit... The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics. 展开更多
关键词 Reservoir porosity and permeabilityevolution Accumulation dynamics Cutoff-values ofpermeability in the accumulation period Oil-bearingpotential low permeability reservoir The third memberof the Shahejie Formation Dongying Sag
下载PDF
Advances in enhanced oil recovery technologies for low permeability reservoirs 被引量:8
11
作者 Wan-Li Kang Bo-Bo Zhou +1 位作者 Miras Issakhov Marabek Gabdullin 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1622-1640,共19页
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi... Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed. 展开更多
关键词 Enhanced oil recovery low permeability reservoir Gas flooding Surfactant flooding Nanofluid flooding IMBIBITION Conformance control
下载PDF
Analytical solution of a double moving boundary problem for nonlinear flows in one-dimensional semi-infinite long porous media with low permeability 被引量:5
12
作者 Wen-Chao Liu Jun Yao Zhang-Xin Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期50-58,共9页
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeabili... Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary. 展开更多
关键词 Threshold pressure gradient Moving boundary problem Fluid flow in porous media low permeability Similarity transformation Exact analytical solution
下载PDF
An overview on nonlinear porous flow in low permeability porous media 被引量:5
13
作者 Yanzhang Huang Zhengming Yang +1 位作者 Ying He Xuewu Wang 《Theoretical & Applied Mechanics Letters》 CAS 2013年第2期1-8,共8页
This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy... This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir~ is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments. 展开更多
关键词 low permeability porous media nonlinear porous flow porous flow equation porous flowfluid
下载PDF
Study on Reducing Injection Pressure of Low Permeability Reservoirs Characterized by High Temperature and High Salinity 被引量:3
14
作者 Zhao Lin Qin Bing +2 位作者 Wu Xiongjun Wang Zenglin Jiang Jianlin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第2期44-54,共11页
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized... In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well. 展开更多
关键词 low permeability reservoir quaternary ammonium salt betaine surfactant interfacial tension reducing injection pressure enhancing oil recovery
下载PDF
A case study of gas drainage to low permeability coal seam 被引量:2
15
作者 Zhang Li Zhang Hui Guo Hao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期687-692,共6页
Gas drainage at low gas permeability coal seam is a main barrier affecting safety and efficient production in coal mines. Therefore, the research and application of drainage technology at low permeability coal seam is... Gas drainage at low gas permeability coal seam is a main barrier affecting safety and efficient production in coal mines. Therefore, the research and application of drainage technology at low permeability coal seam is a key factor for gas control of coal mine. In order to improve the drainage effect, this paper establishes a three-dimensional solid-gas-liquid coupling numerical model, and the gas drainage amounts of different schemes are examined inside the overburden material around the goaf. The Yangquan mine area is selected for the case study, and the gas movement regularity and emission characteristics are analyzed in detail, as well as the stress and fissure variation regularity. Also examinations are the released gas movement, enrichment range and movement regularity during coal extraction. Moreover, the gas drainage technology and drainage parameters for the current coal seam are studied. After measuring the gas drainage flow in-situ, it is concluded that the technology can achieve notable drainage results, with gas drainage rate increase by 30%–40% in a low permeability coal seam. 展开更多
关键词 Gas drainage low permeability Ground drilling holes Coupling model Abutment stress
下载PDF
Characterization and prevention of formation damage for fractured carbonate reservoir formations with low permeability 被引量:2
16
作者 Shu Yong Yan Jienian 《Petroleum Science》 SCIE CAS CSCD 2008年第4期326-333,共8页
Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient ... Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology. 展开更多
关键词 Fractured carbonate formations with low permeability stress sensitivity water blocking MMH drilling fluids formation damage control
下载PDF
Research advances in non-Darcy flow in low permeability media 被引量:2
17
作者 HAO Hong-bo LV Jie +2 位作者 CHEN Yan-mei WANG Chuan-zi HUANG Xiao-rui 《Journal of Groundwater Science and Engineering》 2021年第1期83-92,共10页
More and more experimental results show that Darcy’s law is not fully applicable in low permeability media,and non-Darcy flow has been identified.In this paper we reviewed the research of non-Darcy flow experiments i... More and more experimental results show that Darcy’s law is not fully applicable in low permeability media,and non-Darcy flow has been identified.In this paper we reviewed the research of non-Darcy flow experiments in low-permeability media in recent decades,discuss the existence of non-Darcy flow,and summarize its constitutive equations.The reasons for the threshold gradient were also discussed and summarized for the criterion of the critical point of non-Darcy flow.On this basis,the future development of non-Darcy flow experiments in the rock and clay media were discussed,in order to provide a certain reference for subsequent research on seepage laws in low permeability media. 展开更多
关键词 low permeability media Non-Darcy flow Constitutive equation Critical point criterion
下载PDF
Mechanisms of water block removal by surfactant micellar solutions in low permeability reservoirs
18
作者 LI Junjian LIU Ben +5 位作者 GUO Cheng SU Hang YU Fuwei MA Mengqi WANG Lida JIANG Hanqiao 《Petroleum Exploration and Development》 CSCD 2022年第2期394-405,共12页
The existing researches on surfactant micellar solutions mainly focus on the formulation optimization and core flooding test, and the types and mechanisms of cleanup additives suitable for low permeability reservoir r... The existing researches on surfactant micellar solutions mainly focus on the formulation optimization and core flooding test, and the types and mechanisms of cleanup additives suitable for low permeability reservoir remain unclear. The flowback efficiencies of different types of surfactant micellar solutions were evaluated by core experiments, a multi-level pore-throat system micromodel characterizing pore-throat structures of low permeability reservoir was made, and flooding and flowback experiments of brine and surfactant micellar solutions of different salinities were conducted with the micromodel to show the oil flowback process in micron pores under the effect of surfactant micellar solution visually and reveal the mechanisms of enhancing displacement and flowback efficiency of surfactant micellar solution. During the displacement and flowback of brine and low salinity surfactant micellar solution, many small droplets were produced, when the small droplets passed through pore-throats, huge percolation resistance was created due to Jamin’s effect, leading to the rise of displacement and flowback pressure differences and the drop of flowback efficiency. The surfactant micellar solutions with critical salinity and optimal salinity that were miscible with crude oil to form Winsor Ⅲ micro-emulsion didnot produce mass small droplets, so they could effectively reduce percolation resistance and enhance oil displacement and flowback efficiency. 展开更多
关键词 low permeability reservoir cleanup additive cleanup mechanism SURFACTANT microfluidic visualization experiment crude flowback
下载PDF
Study on the Variation Rule of Produced Oil Components during CO_(2) Flooding in Low Permeability Reservoirs
19
作者 Ganggang Hou Tongjing Liu +2 位作者 Xinyu Yuan Jirui Hou Pengxiang Diwu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期1223-1246,共24页
CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)wil... CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)will vary during CO_(2) flooding in low permeability reservoirs.However,the present researches fail to explain the variation reason and rule.In this study,the physical model of the POC variation during CO_(2) flooding in low permeability reservoir was established,and the variation reason and rule were defined.To verify the correctness of the physical model,the interaction rule of the oil-CO_(2) system was studied by related experiments.The numerical model,including 34 components,was established based on the precise experiments matching,and simulated the POC variation during CO_(2) flooding in low permeability reservoir at different inter-well reservoir characteristics.The POC monitoring data of the CO_(2) flooding pilot test area in northeastern China were analyzed,and the POC variation rule during the oilfield production was obtained.The research results indicated that the existence of the inter-well channeling-path and the permeability difference between matrix and channeling-path are the main reasons for the POC variation during CO_(2) flooding in low permeability reservoirs.The POC variation rules are not the same at different inter-well reservoir characteristics.For the low permeability reservoirs with homogeneous inter-well reservoir,the variation of the light hydrocarbon content in POC increases initially followed by a decrease,while the variation of the heavy hydrocarbon content in POC is completely opposite.The carbon number of the most abundant component in POC will gradually increase.For the low permeability reservoirs with the channeling-path existing in the inter-well reservoir,the variation rule of the light hydrocarbon content in POC is increase-decrease-increase-decrease,while the variation rule of the heavy hydrocarbon content in POC is completely opposite.The carbon number variation rule of the most abundant component in POC is increase-decrease-increase. 展开更多
关键词 low permeability reservoir CO_(2)flooding produced oil component inter-well reservoirs characteristic
下载PDF
An evaluation method of volume fracturing effects for vertical wells in low permeability reservoirs
20
作者 ZHANG Anshun YANG Zhengming +6 位作者 LI Xiaoshan XIA Debin ZHANG Yapu LUO Yutian HE Ying CHEN Ting ZHAO Xinli 《Petroleum Exploration and Development》 2020年第2期441-448,共8页
To evaluate the fracturing effect and dynamic change process after volume fracturing with vertical wells in low permeability oil reservoirs, an oil-water two-phase flow model and a well model are built. On this basis,... To evaluate the fracturing effect and dynamic change process after volume fracturing with vertical wells in low permeability oil reservoirs, an oil-water two-phase flow model and a well model are built. On this basis, an evaluation method of fracturing effect based on production data and fracturing fluid backflow data is established, and the method is used to analyze some field cases. The vicinity area of main fracture after fracturing is divided into different stimulated regions. The permeability and area of different regions are used to characterize the stimulation strength and scale of the fracture network. The conductivity of stimulated region is defined as the product of the permeability and area of the stimulated region. Through parameter sensitivity analysis, it is found that half-length of the fracture and the permeability of the core area mainly affect the flow law near the well, that is, the early stage of production;while matrix permeability mainly affects the flow law at the far end of the fracture. Taking a typical old well in Changqing Oilfield as an example, the fracturing effect and its changes after two rounds of volume fracturing in this well are evaluated. It is found that with the increase of production time after the first volume fracturing, the permeability and conductivity of stimulated area gradually decreased, and the fracturing effect gradually decreased until disappeared;after the second volume fracturing, the permeability and conductivity of stimulated area increased significantly again. 展开更多
关键词 volume fracturing fracturing effect evaluation fracturing area CONDUCTIVITY low permeability reservoir vertical well
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部