期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with diferent Ni additions 被引量:3
1
作者 Zhang Xinning Qu Yingdong +1 位作者 Yang Hongwang Li Rongde 《China Foundry》 SCIE CAS 2013年第5期310-314,共5页
Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of ... Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃. 展开更多
关键词 NI ductile iron low temperature impact toughness fracture morphology
下载PDF
Low temperature impact toughness of laser hybrid welded joint of high strength low alloy steel
2
作者 倪加明 李铸国 +2 位作者 黄坚 倪慧峰 吴毅雄 《China Welding》 EI CAS 2011年第3期1-5,共5页
High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmissi... High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal. 展开更多
关键词 laser hybrid welding high strength low alloy steel low temperature impact toughness carbide free bainite retained austenite constituent film
下载PDF
Energy Separation and Explicit Dynamic Analysis of Low Temperature Impact Toughness of Transmission Tower Material Q420B
3
作者 YU Xingxue ZHANG Yinghua +1 位作者 ZHANG Xiaomin JIANG Yu 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第3期381-387,共7页
To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420 B,the finite element model of Charpy impac... To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420 B,the finite element model of Charpy impact test is established on the basis of experiment.The simulation and test results are verified,and the specimen fracture is analyzed by scanning electron microscope.The formation and growth mechanism of the crack are dynamically analyzed.On this basis,energy separation method is used to investigate the effect of low temperature on impact toughness.The results show that the simulation and test results are in good agreement,and the ductile-brittle transition temperature of Q420 B is about-50 ℃.The breaking process of the specimen is divided into the crack formation and propagation.When temperature drops from 20 to-60 ℃,the crack propagation energy decreases from 51.0 to 11.9 J,the crack formation energy reduces from 39.9 to 15.8 J,and the fracture time of the material drops from 1.8 to 0.6 ms. 展开更多
关键词 Q420B low temperature impact toughness SIMULATION explicit dynamic energy separation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部