The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other tre...The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other treatment models within the activated sludge family it is possible to find alternatives for the operation. This paper concentrates on the possibilities to improve even small WWTP with respect to energy savings. The small plant in Northern Sweden, called Rosvik WWTP, is given as an example. Some important findings related to the intermittent aeration mode may be summarized as follows: 1) An energy savings for the operation of the small WWTP with respect to aeration needs that resulted in a decrease of the energy power supply by more than 35%, as compared with the previous operation based on continuous aeration;2) The up to date effluent levels with respect to the main pollutants have remained at very good levels in 2020, P-level averages 0.16 mg P/l versus consent level <</span><span> </span><span style="font-family:Verdana;">0.5 mg P/l;COD-level 40 versus <</span><span> </span><span><span style="font-family:Verdana;">70 mg/l and BOD</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;"> 9 versus <</span></span><span> </span><span><span style="font-family:Verdana;">15 mg/l;3) Sometimes, also improved sludge settling characteristics have been observed, thus providing improved discharge figures;4) The potential to develop an enhanced biological phosphorus removal. There are however </span><span style="font-family:Verdana;">some needed conditions to accomplish these improvements: 1) Reliable</span><span style="font-family:Verdana;"> on-line probes for both oxygen control, SS-concentration control and optionally also for nitrogen control;2) A flexible automation system that allows the needed process modifications to take place;3) And finally, very important dedicated and competent plant operators, with the needed curiosity for operation improvements.展开更多
While the shortage of water and energy is a well-recognized worldwide natural resources issue, little attention has been given to irrigation energy efficiency. In this paper, we examine the potential energy savings th...While the shortage of water and energy is a well-recognized worldwide natural resources issue, little attention has been given to irrigation energy efficiency. In this paper, we examine the potential energy savings that can be achieved by implementing improved irrigation technologies in China. The use of improved irrigation management measures such as a flow meter, irrigation scheduling, and/or regular maintenance and upgrades, typically reduces the amount of water pumped over the course of a growing season. The total energy saved by applying these improved measures could reach 20%, as compared with traditional irrigation methods. Two methods of irrigation water conveyance by traditional earth canal and low pressure pipeline irrigation (LPPI) were also evaluated. Our study indicated that LPPI could save 6.48x 109 kWh yr1 when applied to 11 Chinese provinces. Also, the COz emission was reduced by 6.72 metric tons per year. Among these 11 surveyed provinces, the energy saving potential for two provinces, Hebei and Shandong, could reach 1.45 x 109 kWh yr^-1. Using LPPI, potential energy saved and CO2 emissions reduced in the other 20 Chinese provinces were estimated at about 2.97×109 kWh yr-1 and 2.69 metric tons per year, respectively. The energy saving potential for Heilongjiang, a major agriculture province, could reach 1.77× 109 kWh yr-1, which is the largest in all provinces. If LPPI is applied to the entire country, average annual energy saving of more than 9 billion kWh and average annual CO2 emission reduction of more than 9.0 metric tons could be realized. Rice is one of the largest users of the world's fresh water resources. Compared with continuous flooding irrigation, intermittent irrigation (ITI) can improve yield and water-use efficiency in paddy fields. The total increments of net output energy and yield by ITI in paddy fields across China could reach 2.5× 1016 calories and l07 tons, respectively. So far only a small part of agricultural land in China has adopted water and energy saving technologies. Therefore, potential water and energy savings in China by adapting improved irrigation technology could be significant and should be carefully studied and applied.展开更多
文摘The very long tradition of the activated sludge treatment model within the water industry has demonstrated very versatile possibilities to adopt the operation mode for different enhancements. By looking into other treatment models within the activated sludge family it is possible to find alternatives for the operation. This paper concentrates on the possibilities to improve even small WWTP with respect to energy savings. The small plant in Northern Sweden, called Rosvik WWTP, is given as an example. Some important findings related to the intermittent aeration mode may be summarized as follows: 1) An energy savings for the operation of the small WWTP with respect to aeration needs that resulted in a decrease of the energy power supply by more than 35%, as compared with the previous operation based on continuous aeration;2) The up to date effluent levels with respect to the main pollutants have remained at very good levels in 2020, P-level averages 0.16 mg P/l versus consent level <</span><span> </span><span style="font-family:Verdana;">0.5 mg P/l;COD-level 40 versus <</span><span> </span><span><span style="font-family:Verdana;">70 mg/l and BOD</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;"> 9 versus <</span></span><span> </span><span><span style="font-family:Verdana;">15 mg/l;3) Sometimes, also improved sludge settling characteristics have been observed, thus providing improved discharge figures;4) The potential to develop an enhanced biological phosphorus removal. There are however </span><span style="font-family:Verdana;">some needed conditions to accomplish these improvements: 1) Reliable</span><span style="font-family:Verdana;"> on-line probes for both oxygen control, SS-concentration control and optionally also for nitrogen control;2) A flexible automation system that allows the needed process modifications to take place;3) And finally, very important dedicated and competent plant operators, with the needed curiosity for operation improvements.
基金funded by the National Natural Science Foundation of China(31270748and91025008)the Shenzhen Science and Technologies Development Plan Program of China(JC201005280681A)
文摘While the shortage of water and energy is a well-recognized worldwide natural resources issue, little attention has been given to irrigation energy efficiency. In this paper, we examine the potential energy savings that can be achieved by implementing improved irrigation technologies in China. The use of improved irrigation management measures such as a flow meter, irrigation scheduling, and/or regular maintenance and upgrades, typically reduces the amount of water pumped over the course of a growing season. The total energy saved by applying these improved measures could reach 20%, as compared with traditional irrigation methods. Two methods of irrigation water conveyance by traditional earth canal and low pressure pipeline irrigation (LPPI) were also evaluated. Our study indicated that LPPI could save 6.48x 109 kWh yr1 when applied to 11 Chinese provinces. Also, the COz emission was reduced by 6.72 metric tons per year. Among these 11 surveyed provinces, the energy saving potential for two provinces, Hebei and Shandong, could reach 1.45 x 109 kWh yr^-1. Using LPPI, potential energy saved and CO2 emissions reduced in the other 20 Chinese provinces were estimated at about 2.97×109 kWh yr-1 and 2.69 metric tons per year, respectively. The energy saving potential for Heilongjiang, a major agriculture province, could reach 1.77× 109 kWh yr-1, which is the largest in all provinces. If LPPI is applied to the entire country, average annual energy saving of more than 9 billion kWh and average annual CO2 emission reduction of more than 9.0 metric tons could be realized. Rice is one of the largest users of the world's fresh water resources. Compared with continuous flooding irrigation, intermittent irrigation (ITI) can improve yield and water-use efficiency in paddy fields. The total increments of net output energy and yield by ITI in paddy fields across China could reach 2.5× 1016 calories and l07 tons, respectively. So far only a small part of agricultural land in China has adopted water and energy saving technologies. Therefore, potential water and energy savings in China by adapting improved irrigation technology could be significant and should be carefully studied and applied.