Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised o...Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.展开更多
The effects of mineral admixtures on fluidity,mechanical and hydrational exothermic behavior were studied.The results show that,double adding ways,i e,fly ash and slag were added at the same time,not only improves th...The effects of mineral admixtures on fluidity,mechanical and hydrational exothermic behavior were studied.The results show that,double adding ways,i e,fly ash and slag were added at the same time,not only improves the fluidity of fresh concrete with low W/B and compensates the lower early compressive strength of harden concrete caused by high adding amount of fly ash, but also greatly reduces the highest temperature rise, exothermic rate and total heat liberation of 3 day of binder pastes in HLPC, and postponed the arrival time of the highest temperature rise. HLPC was prepared and applied to project practice successfully.展开更多
Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical propertie...Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical properties of the catalyst samples were characterized by N_2 isothermal adsorption/desorption, X-ray diffraction( XRD) and a scanning electron microscope( SEM). Afterwards, a series of experiments were carried out to investigate the catalytic performance and the results showthat catalysts with 15% and20% Ni loadings have better methanation catalytic effect than those with 5% and 10% Ni loadings in terms of elevating the LHV of biomass gasification fuel gas. M oreover, controllable influential factors such as the reaction temperature, the H_2/CO ratio and the water content occupy an important position in the methanation of biomass gasification fuel gas. 15 Ni/γ-Al_2O_3 and 20 Ni/γ-Al_2O_3 catalysts have a higher CO conversion and CH_4 selectivity at 350 ℃ and the LHV of biomass gasification fuel gas can be largely increased by 34. 3 % at 350 ℃. Higher H_2/CO ratio and a lower water content are more beneficial for improving the LHV of biomass gasification fuel gas when considering the combination of both CO conversion and CH_4 selectivity. This is due to the fact that a higher H_2/CO ratio and lower water content can increase the extent of the methanation reaction.展开更多
In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes o...In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes occurred during the heat recovery process. In such case, the feed stream was divided into two streams: the liquid feed stream and the gaseous feed stream. Through calculation, the optimal ATmin was established at 26℃, and the total cost of heat exchange process was only $1.098× 106. By using the Problem Table Algorithm for pinch analysis, the temperature of the hot and the cold steams was 119℃ and 93 ℃, respectively. At a temperature higher than 119 ℃, all heat of the hot stream could not be cooled by the condenser, and the minimum heat load of utility (QH.min) was 440457.64 kW; and at a temperature below 93 ℃, all heat of the cold stream could not be provided by the heater, and the minimum cold load of utility (QC.min) was 1965993.85 kW. Finally, the synthesis of heat exchanger network was established through integrating two heat exchanger networks.展开更多
This paper describes the effects of non-equilibrium air plasma generated by a dielectric barrier discharge (DBD) on the combustion of low heating value fuels. The experimental results indicate that addition of a very ...This paper describes the effects of non-equilibrium air plasma generated by a dielectric barrier discharge (DBD) on the combustion of low heating value fuels. The experimental results indicate that addition of a very small amount of energy to the air flow in the form of DBD significantly improves the flame stability. Moreover, main combustion characteristics such as flame propagation speed, combustion intensity and lean blow-off limits are also enhanced by the effect of plasma. Some active radicals such as excited O atom and excited N2 molecule are observed by spectrograph in the discharge area. Based on the results of numerical investigation we can conclude that these active radicals generated in discharge area can accelerate the production rate of active OH radical which plays a key role in the oxidation process of low heating value fuel, and thus the whole combustion process is accelerated.展开更多
The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that...The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects.展开更多
The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and dura...The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3 ℃,and the limits tension of LHC concrete was increased by 10× 10^-6-15×10^-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete.展开更多
The self-stress trial of the fifteen high-strength, low-heat andmicro-expansion concrete-filled steel tube(CFST)is introduced, andthe generating and distributing features of pre-stress and itsrelation to add- ing quan...The self-stress trial of the fifteen high-strength, low-heat andmicro-expansion concrete-filled steel tube(CFST)is introduced, andthe generating and distributing features of pre-stress and itsrelation to add- ing quantity of expansive agent, which providespersuasive dependences for optimal design of high-strength, low- heatand micro-expansion CFST were investigated, especially for the designof added quantity of expansive agent.展开更多
Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temp...Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.展开更多
This paper reports that the low-temperature heat capacities of pyridine-2,6-dicarboxylic acid were measured by a precision automatic calorimeter over a temperature range from 78 K to 380 K. A polynomial equation of he...This paper reports that the low-temperature heat capacities of pyridine-2,6-dicarboxylic acid were measured by a precision automatic calorimeter over a temperature range from 78 K to 380 K. A polynomial equation of heat capacities as a function of temperature was fitted by the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K. The constant-volume energy of combustion of the compound was determined by means of a precision rotating-bomb combustion calorimeter. The standard molar enthalpy of combustion of the compound was derived from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound was calculated from a combination of the datum of the standard molar enthalpy of combustion of the compound with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.展开更多
Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi stee...Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi steel treated by different dual phase heat treatment have been studied. The results show that dual phase heat treatment with pre-quenching technique and then heating from room temperature to the critical zone can achieve finer and more homogeneous microstructure than that with pre-normalizing technique and then cooling from austenite zone to the critical zone. Among all factors affecting dual phase heat treatment, quenching temperature at the critical zone and tempering temperature play an important part in mechanical properties. Using proper dual phase heat treatment technique with computer optimized parameters, the yield strength, the elongation and impact toughness of 20MnSi can reach 860 MPa, 16% and 207 MPa respectively.展开更多
Low temperature heat adsorption pumps represent the innovative cooling systems, where cold is generated through adsorption/desorption cycle of water by a suitable adsorbent with good adsorption and high thermal conduc...Low temperature heat adsorption pumps represent the innovative cooling systems, where cold is generated through adsorption/desorption cycle of water by a suitable adsorbent with good adsorption and high thermal conductive properties. In this work, the hydrothermal synthesis of zeolite SAPO-34 on thermal conductive grapbitic supports, aiming at the development of highly pertbrming adsorbent materials, is reported. The synthesis was carried out using as-received and oxidized commercial carbon papers, and graphite plate. Composites were characterized by XRD, SEM and also by a thermogravimetric method, using a Cahn microbalance. The water adsorbing capacity showed typical S-shape trend and the maximum water loading was around 25 wt%, a value close to water adsorption capability of pure SAPO-34. These results are very promising for their application in heat adsorption pumps.展开更多
During the production of Ti-bearing Al-killed ultra-low-carbon(ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl–Heraeus(RH)...During the production of Ti-bearing Al-killed ultra-low-carbon(ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl–Heraeus(RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process(process-Ⅰ), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition(process-Ⅱ). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-Ⅰ than by process-Ⅱ. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-Ⅰ were substantially less than those in the slab obtained by process-Ⅱ. For process-Ⅰ, the Al_2O_3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-Ⅱ than for process-Ⅰ at different refining stages because of the higher dissolved oxygen concentration in process-Ⅱ. Industrial test results showed that process-Ⅰ was more beneficial for improving the cleanliness of molten steel.展开更多
This study investigates the effects of using fuels with low heating values on the performance of an annular micro gas turbine(MGT)experimentally and numerically.The MGT used in this study is MW-54, whose original fuel...This study investigates the effects of using fuels with low heating values on the performance of an annular micro gas turbine(MGT)experimentally and numerically.The MGT used in this study is MW-54, whose original fuel is liquid(Jet A1).Its fuel supply system is re-designed to use biogas fuel with low heating value(LHV).The purpose is to reduce the size of a biogas distributed power supply system and to enhance its popularization.This study assesses the practicability of using fuels with LHVs by using various mixing ratios of methane(CH4)and carbon dioxide(CO2).Prior to experiments,the corresponding simulations,aided by the commercial code CFD-ACE+,were carried out to investigate the cooling effect in a perforated combustion chamber and combustion behavior in an annular MGT when LHV gas was used.The main purposes are to confirm that there are no hot spots occurring in the liners and the exhaust temperatures of combustor are lower than 700°C when MGT is operated under different conditions.In experiments,fuel pressure and mass flow rate,turbine rotational speed,generator power output,and temperature distribution were measured to analyze MGT performance.Experimental results indicate that the presented MGT system operates successfully under each tested condition when the minimum heating value of the simulated fuel is approximately 50%of pure methane.The power output is around 170 W at 85000 r/min as 90%CH4 with 10%CO2 is used and 70 W at 60000 r/min as 70%CH4 with 30%CO2 is used.When a critical limit of 60%CH4 is used,the power output is extremely low. Furthermore,the best theoretical Brayton cycle efficiency for such MGT is calculated as 23%according to the experimental data while LHV fuel is used.Finally,the numerical results and experiment results reveal that MGT performance can be improved further and the possible solutions for performance im- provement are suggested for the future studies.展开更多
The characteristics of nanosized precipitates in steels depend on the heat-treatment parameters. The effects of characteristics of vanadium precipitates formed during isothermal heat treatment on the hardness of the f...The characteristics of nanosized precipitates in steels depend on the heat-treatment parameters. The effects of characteristics of vanadium precipitates formed during isothermal heat treatment on the hardness of the ferrite matrix in low-carbon vanadium-alloyed steel were investigated through analysis of transmission electron microscopy images and microhardness measurements. The results show that, during isothermal holding in the temperature range from 675 to 750℃, only interphase precipitation occurs, whereas only random precipitation occurs in the ferrite matrix during holding at 600℃. Furthermore, during isothermal heat treatment between 600 and 675℃, both random and interphase precipitates occurred in the ferrite. Nanoscale vanadium carbides with different atomic ratios of vanadium(V) and carbon(C) were the dominant precipitates in the random and interphase precipitates. The sizes of random precipitation carbides were smaller than those of interphase ones. Also, the sample isothermally heat treated at 650℃ for 900s exhibited a higher hardness with a narrower hardness distribution.展开更多
There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat s...There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat source over TP and its impact on atmospheric circulation are not fully carried out.By using the vertically integrated apparent heat source which is calculated by the derivation method,main oscillation periods and propagation features of the summer apparent heat source over the eastern TP(Q1ETP)are diagnosed and analyzed from 1981 to 2000.The results are as follows:(1)Summer Q1ETP has two significant oscillation periods:one is 10-20d(BWO,Quasi-Biweekly Oscillation)and the other is 30-60d(LFO,Low-frequency Oscillation).(2)A significant correlation is found between Q1ETP and rainfall over the eastern TP in 1985 and 1992,showing that the low-frequency oscillation of heat source is likely to be stimulated by oscillation of latent heat.(3)The oscillation of heat source on the plateau mainly generates locally but sometimes originates from elsewhere.The BWO of Q1ETP mainly exhibits stationary wave,sometimes moves out(mainly eastward),and has a close relationship with the BWO from the Bay of Bengal.Showing the same characteristics as BWO,the LFO mainly shows local oscillation,occasionally propagates(mainly westward),and connects with the LFO from East China.In summary,more attention should be paid to the study on BWO of Q1ETP.展开更多
Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoel...Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoelectric conversion element), because the initial investment is large. The final purpose of this research is development of the low temperature difference drive engine supposing use in a hot-springs resort as a power source for electric power generation. In order that a traveler may look at and delight a motion of an engine, it is made to drive at low-speed number of rotations. An engine cycle of this study is aimed at the development of Stirling cycle engine which can maintain high efficiency in small size. This kind of engine has simple structure;it brings low cost, and it is easy to perform maintenance. However, it is difficult to obtain enough output by this type of engine, because of its low temperature difference. This paper deals with the heat transfer characteristic that the working fluid including a phase change material flows into the heating surface from the narrow path. In order to increase the amount of the heat transmission, Diethylether is added to the working fluid. Diethylether is selected as a phase change material (PCM) that has the boiling point which exists between the heat source of high temperature and low temperature. The parameters of the experiment are additive amount of PCM, rotational speed of the displacer piston and temperature of heat transfer surface. It is shown that it is possible to make exchange of heat amount increase by adding phase change material. The result of this research shows the optimal condition of the difference in temperature in heat processing, number of revolutions, and addition concentration of PCM.展开更多
This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial eq...This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15K were calculated and tabulated at the interval of 5K. The energy equivalent, εcalor, of the oxygen-bomb combustion calorimeter has been determined from 0.68g of NIST 39i benzoic acid to be εcalor=(14674.69±17.49)J·K^-1. The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be ΔcU=-(32374.25±12.93)J·g^-1. The standard molar enthalpy of combustion for the compound was calculated to be ΔcHm = -(4445.47 ± 1.77) kJ·mol^-1 according to the definition of enthalpy of combustion and other thermodynamic principles. Finally, the standard molar enthalpy of formation of the compound was derived to be ΔfHm(C8H11NO, s)=-(274.68 ±2.06) kJ·mol^-1, in accordance with Hess law.展开更多
文摘Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 9938170 )
文摘The effects of mineral admixtures on fluidity,mechanical and hydrational exothermic behavior were studied.The results show that,double adding ways,i e,fly ash and slag were added at the same time,not only improves the fluidity of fresh concrete with low W/B and compensates the lower early compressive strength of harden concrete caused by high adding amount of fly ash, but also greatly reduces the highest temperature rise, exothermic rate and total heat liberation of 3 day of binder pastes in HLPC, and postponed the arrival time of the highest temperature rise. HLPC was prepared and applied to project practice successfully.
基金The International S&T Cooperation Program of China(No.2014DFE70150)
文摘Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical properties of the catalyst samples were characterized by N_2 isothermal adsorption/desorption, X-ray diffraction( XRD) and a scanning electron microscope( SEM). Afterwards, a series of experiments were carried out to investigate the catalytic performance and the results showthat catalysts with 15% and20% Ni loadings have better methanation catalytic effect than those with 5% and 10% Ni loadings in terms of elevating the LHV of biomass gasification fuel gas. M oreover, controllable influential factors such as the reaction temperature, the H_2/CO ratio and the water content occupy an important position in the methanation of biomass gasification fuel gas. 15 Ni/γ-Al_2O_3 and 20 Ni/γ-Al_2O_3 catalysts have a higher CO conversion and CH_4 selectivity at 350 ℃ and the LHV of biomass gasification fuel gas can be largely increased by 34. 3 % at 350 ℃. Higher H_2/CO ratio and a lower water content are more beneficial for improving the LHV of biomass gasification fuel gas when considering the combination of both CO conversion and CH_4 selectivity. This is due to the fact that a higher H_2/CO ratio and lower water content can increase the extent of the methanation reaction.
基金the National Nature Science Foundation (Grant No. 51178463)
文摘In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes occurred during the heat recovery process. In such case, the feed stream was divided into two streams: the liquid feed stream and the gaseous feed stream. Through calculation, the optimal ATmin was established at 26℃, and the total cost of heat exchange process was only $1.098× 106. By using the Problem Table Algorithm for pinch analysis, the temperature of the hot and the cold steams was 119℃ and 93 ℃, respectively. At a temperature higher than 119 ℃, all heat of the hot stream could not be cooled by the condenser, and the minimum heat load of utility (QH.min) was 440457.64 kW; and at a temperature below 93 ℃, all heat of the cold stream could not be provided by the heater, and the minimum cold load of utility (QC.min) was 1965993.85 kW. Finally, the synthesis of heat exchanger network was established through integrating two heat exchanger networks.
基金supported by National Natural Science Foundation of China with project No.50976116 and No.51076150
文摘This paper describes the effects of non-equilibrium air plasma generated by a dielectric barrier discharge (DBD) on the combustion of low heating value fuels. The experimental results indicate that addition of a very small amount of energy to the air flow in the form of DBD significantly improves the flame stability. Moreover, main combustion characteristics such as flame propagation speed, combustion intensity and lean blow-off limits are also enhanced by the effect of plasma. Some active radicals such as excited O atom and excited N2 molecule are observed by spectrograph in the discharge area. Based on the results of numerical investigation we can conclude that these active radicals generated in discharge area can accelerate the production rate of active OH radical which plays a key role in the oxidation process of low heating value fuel, and thus the whole combustion process is accelerated.
基金Supported by the National Natural Science Foundation of China(21476119,21406124)Major Science and Technology Innovation Project of Shandong Province(2018CXGC1102).
文摘The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects.
基金the National Natural Science Foundation of China(No.50539010)
文摘The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3 ℃,and the limits tension of LHC concrete was increased by 10× 10^-6-15×10^-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete.
文摘The self-stress trial of the fifteen high-strength, low-heat andmicro-expansion concrete-filled steel tube(CFST)is introduced, andthe generating and distributing features of pre-stress and itsrelation to add- ing quantity of expansive agent, which providespersuasive dependences for optimal design of high-strength, low- heatand micro-expansion CFST were investigated, especially for the designof added quantity of expansive agent.
文摘Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.
基金Project supported by the National Natural Science Foundations of China (Grant Nos.20673050 and 20973089)
文摘This paper reports that the low-temperature heat capacities of pyridine-2,6-dicarboxylic acid were measured by a precision automatic calorimeter over a temperature range from 78 K to 380 K. A polynomial equation of heat capacities as a function of temperature was fitted by the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K. The constant-volume energy of combustion of the compound was determined by means of a precision rotating-bomb combustion calorimeter. The standard molar enthalpy of combustion of the compound was derived from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound was calculated from a combination of the datum of the standard molar enthalpy of combustion of the compound with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.
文摘Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi steel treated by different dual phase heat treatment have been studied. The results show that dual phase heat treatment with pre-quenching technique and then heating from room temperature to the critical zone can achieve finer and more homogeneous microstructure than that with pre-normalizing technique and then cooling from austenite zone to the critical zone. Among all factors affecting dual phase heat treatment, quenching temperature at the critical zone and tempering temperature play an important part in mechanical properties. Using proper dual phase heat treatment technique with computer optimized parameters, the yield strength, the elongation and impact toughness of 20MnSi can reach 860 MPa, 16% and 207 MPa respectively.
基金partially funded by "Fondo per la Ricerca per il Sistema Elettrico-AdP MSE-CNR"
文摘Low temperature heat adsorption pumps represent the innovative cooling systems, where cold is generated through adsorption/desorption cycle of water by a suitable adsorbent with good adsorption and high thermal conductive properties. In this work, the hydrothermal synthesis of zeolite SAPO-34 on thermal conductive grapbitic supports, aiming at the development of highly pertbrming adsorbent materials, is reported. The synthesis was carried out using as-received and oxidized commercial carbon papers, and graphite plate. Composites were characterized by XRD, SEM and also by a thermogravimetric method, using a Cahn microbalance. The water adsorbing capacity showed typical S-shape trend and the maximum water loading was around 25 wt%, a value close to water adsorption capability of pure SAPO-34. These results are very promising for their application in heat adsorption pumps.
基金financially supported by the National Natural Science Foundation of China (No.51404022)
文摘During the production of Ti-bearing Al-killed ultra-low-carbon(ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl–Heraeus(RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process(process-Ⅰ), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition(process-Ⅱ). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-Ⅰ than by process-Ⅱ. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-Ⅰ were substantially less than those in the slab obtained by process-Ⅱ. For process-Ⅰ, the Al_2O_3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-Ⅱ than for process-Ⅰ at different refining stages because of the higher dissolved oxygen concentration in process-Ⅱ. Industrial test results showed that process-Ⅰ was more beneficial for improving the cleanliness of molten steel.
基金Supported by the‘National’Science Council of Taiwan,China(Grant No.NSC96-2218-E-009-002)and Ted Knoy is appreciated for his editorial assistance
文摘This study investigates the effects of using fuels with low heating values on the performance of an annular micro gas turbine(MGT)experimentally and numerically.The MGT used in this study is MW-54, whose original fuel is liquid(Jet A1).Its fuel supply system is re-designed to use biogas fuel with low heating value(LHV).The purpose is to reduce the size of a biogas distributed power supply system and to enhance its popularization.This study assesses the practicability of using fuels with LHVs by using various mixing ratios of methane(CH4)and carbon dioxide(CO2).Prior to experiments,the corresponding simulations,aided by the commercial code CFD-ACE+,were carried out to investigate the cooling effect in a perforated combustion chamber and combustion behavior in an annular MGT when LHV gas was used.The main purposes are to confirm that there are no hot spots occurring in the liners and the exhaust temperatures of combustor are lower than 700°C when MGT is operated under different conditions.In experiments,fuel pressure and mass flow rate,turbine rotational speed,generator power output,and temperature distribution were measured to analyze MGT performance.Experimental results indicate that the presented MGT system operates successfully under each tested condition when the minimum heating value of the simulated fuel is approximately 50%of pure methane.The power output is around 170 W at 85000 r/min as 90%CH4 with 10%CO2 is used and 70 W at 60000 r/min as 70%CH4 with 30%CO2 is used.When a critical limit of 60%CH4 is used,the power output is extremely low. Furthermore,the best theoretical Brayton cycle efficiency for such MGT is calculated as 23%according to the experimental data while LHV fuel is used.Finally,the numerical results and experiment results reveal that MGT performance can be improved further and the possible solutions for performance im- provement are suggested for the future studies.
文摘The characteristics of nanosized precipitates in steels depend on the heat-treatment parameters. The effects of characteristics of vanadium precipitates formed during isothermal heat treatment on the hardness of the ferrite matrix in low-carbon vanadium-alloyed steel were investigated through analysis of transmission electron microscopy images and microhardness measurements. The results show that, during isothermal holding in the temperature range from 675 to 750℃, only interphase precipitation occurs, whereas only random precipitation occurs in the ferrite matrix during holding at 600℃. Furthermore, during isothermal heat treatment between 600 and 675℃, both random and interphase precipitates occurred in the ferrite. Nanoscale vanadium carbides with different atomic ratios of vanadium(V) and carbon(C) were the dominant precipitates in the random and interphase precipitates. The sizes of random precipitation carbides were smaller than those of interphase ones. Also, the sample isothermally heat treated at 650℃ for 900s exhibited a higher hardness with a narrower hardness distribution.
基金General Program from National Natural Science Foundation of China(40475029)Key Projects of the National Natural Science Foundation of China(40633018,90711003)
文摘There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat source over TP and its impact on atmospheric circulation are not fully carried out.By using the vertically integrated apparent heat source which is calculated by the derivation method,main oscillation periods and propagation features of the summer apparent heat source over the eastern TP(Q1ETP)are diagnosed and analyzed from 1981 to 2000.The results are as follows:(1)Summer Q1ETP has two significant oscillation periods:one is 10-20d(BWO,Quasi-Biweekly Oscillation)and the other is 30-60d(LFO,Low-frequency Oscillation).(2)A significant correlation is found between Q1ETP and rainfall over the eastern TP in 1985 and 1992,showing that the low-frequency oscillation of heat source is likely to be stimulated by oscillation of latent heat.(3)The oscillation of heat source on the plateau mainly generates locally but sometimes originates from elsewhere.The BWO of Q1ETP mainly exhibits stationary wave,sometimes moves out(mainly eastward),and has a close relationship with the BWO from the Bay of Bengal.Showing the same characteristics as BWO,the LFO mainly shows local oscillation,occasionally propagates(mainly westward),and connects with the LFO from East China.In summary,more attention should be paid to the study on BWO of Q1ETP.
文摘Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoelectric conversion element), because the initial investment is large. The final purpose of this research is development of the low temperature difference drive engine supposing use in a hot-springs resort as a power source for electric power generation. In order that a traveler may look at and delight a motion of an engine, it is made to drive at low-speed number of rotations. An engine cycle of this study is aimed at the development of Stirling cycle engine which can maintain high efficiency in small size. This kind of engine has simple structure;it brings low cost, and it is easy to perform maintenance. However, it is difficult to obtain enough output by this type of engine, because of its low temperature difference. This paper deals with the heat transfer characteristic that the working fluid including a phase change material flows into the heating surface from the narrow path. In order to increase the amount of the heat transmission, Diethylether is added to the working fluid. Diethylether is selected as a phase change material (PCM) that has the boiling point which exists between the heat source of high temperature and low temperature. The parameters of the experiment are additive amount of PCM, rotational speed of the displacer piston and temperature of heat transfer surface. It is shown that it is possible to make exchange of heat amount increase by adding phase change material. The result of this research shows the optimal condition of the difference in temperature in heat processing, number of revolutions, and addition concentration of PCM.
基金supported by the National Natural Science Foundation of China (Grant No 20673050)
文摘This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15K were calculated and tabulated at the interval of 5K. The energy equivalent, εcalor, of the oxygen-bomb combustion calorimeter has been determined from 0.68g of NIST 39i benzoic acid to be εcalor=(14674.69±17.49)J·K^-1. The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be ΔcU=-(32374.25±12.93)J·g^-1. The standard molar enthalpy of combustion for the compound was calculated to be ΔcHm = -(4445.47 ± 1.77) kJ·mol^-1 according to the definition of enthalpy of combustion and other thermodynamic principles. Finally, the standard molar enthalpy of formation of the compound was derived to be ΔfHm(C8H11NO, s)=-(274.68 ±2.06) kJ·mol^-1, in accordance with Hess law.