Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur signi...Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur significant load and consume more energy.This paper proposes a novel energy efficient ARQ protocol called ARQ+,which uses the nearest-first scheme and NAK aggregation scheme to reduce the amount and transmission hops of the ARQ related packets.Consequently,the energy consumption is significantly decreased.Theoretical analyses of ARQ+ on energy consumption,packet arrive ratio and latency are provided.Performance improvement of ARQ+ is validated by extensive simulations.They both show that ARQ+ has satisfactory energy efficiency,good packets arriving ratio and reasonable average packet delay comparing to traditional ARQ schemes.展开更多
The design of a router in a network-on-chip (NoC) system has an important impact on some perfor- mance criteria. In this paper, we propose a low overhead load balancing router (LOLBR) for 2D mesh NoC to enhance ro...The design of a router in a network-on-chip (NoC) system has an important impact on some perfor- mance criteria. In this paper, we propose a low overhead load balancing router (LOLBR) for 2D mesh NoC to enhance routing performance criteria with low hardware overhead. The proposed LOLBR employs a balance tog- gle identifier to control the initial routing direction of X or Y for flit injection. The simplified demultiplexers and multiplexers are used to handle output ports allocation and contention, which provide a guarantee of deadlock avoidance. Simulation results show that the proposed LOLBR yields an improvement of routing performance over the reported routing schemes in average packet latency by 26.5%. The layout area and power consumption of the network compared with the reported routing schemes are 15.3% and 11.6% less respectively.展开更多
基金partly supported by the National Key Technology Research and Development Program of China under Grant No.2011BAK12B02the National Natural Science Foundation of China under Grant No.61104042+2 种基金the National S&T Major Project of China under Grant No.2010ZX03005-003the Program for New Century Excellent Talents in University(NCET-10-0294),Chinathe National Natural Science Foundation of China under Grant No.60832007
文摘Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur significant load and consume more energy.This paper proposes a novel energy efficient ARQ protocol called ARQ+,which uses the nearest-first scheme and NAK aggregation scheme to reduce the amount and transmission hops of the ARQ related packets.Consequently,the energy consumption is significantly decreased.Theoretical analyses of ARQ+ on energy consumption,packet arrive ratio and latency are provided.Performance improvement of ARQ+ is validated by extensive simulations.They both show that ARQ+ has satisfactory energy efficiency,good packets arriving ratio and reasonable average packet delay comparing to traditional ARQ schemes.
基金Project supported by the National Natural Science Foundation of China(Nos.61474087,61322405,61376039)
文摘The design of a router in a network-on-chip (NoC) system has an important impact on some perfor- mance criteria. In this paper, we propose a low overhead load balancing router (LOLBR) for 2D mesh NoC to enhance routing performance criteria with low hardware overhead. The proposed LOLBR employs a balance tog- gle identifier to control the initial routing direction of X or Y for flit injection. The simplified demultiplexers and multiplexers are used to handle output ports allocation and contention, which provide a guarantee of deadlock avoidance. Simulation results show that the proposed LOLBR yields an improvement of routing performance over the reported routing schemes in average packet latency by 26.5%. The layout area and power consumption of the network compared with the reported routing schemes are 15.3% and 11.6% less respectively.