Introduction The high-energy photon source,which has been built in Huairou,Beijing,has high requirements on magnetic field dithering.Magnetic field dithering is mainly determined by the stability of the output current...Introduction The high-energy photon source,which has been built in Huairou,Beijing,has high requirements on magnetic field dithering.Magnetic field dithering is mainly determined by the stability of the output current of the power supply.In order to ensure the stability of the output current of quadrupole magnet power supply,the power supply sampling control loop needs to be precisely designed.In this paper,a precision ADC sampling system based on internal temperature control is designed to carry out precise control of the sampling ADC.Materials In this design,precise ADC chip is used to complete the precise sampling of the system.The precise sampling system contains a DAC system for high-speed settings.Methods In order to verify the design of the system,high-precision quadrupolemagnet power supply is used for measurement.Conclusion The experimental results show that the temperature variation range of precision temperature control ADC system is±0.1°C.By using the precise temperature controlADCsystem,the output current stability of the high-precision quadrupole magnet power supply is effectively improved.展开更多
A novel low temperature solid state electric field sensor is demonstrated as a promising sensor. The sensor is a type of constant voltage Wheatstone bridge whose resistors are four direct gate SOl MOSFET devices. It i...A novel low temperature solid state electric field sensor is demonstrated as a promising sensor. The sensor is a type of constant voltage Wheatstone bridge whose resistors are four direct gate SOl MOSFET devices. It is demonstrated in theory that the output voltage signal is proportional to the electric field E, the temperature drift is about zero when the temperature is in the range from 200 to 400 K, and the doping concentration is in the range from 1 × 10^14 to 1 × 10^16 cm^-3. The experiment results indicate that the resolution of the sensor is about 3.27 mV for a 1000 V/m electric field at 300 K, and the voltage drift by an amount is about 47 V/m field signal when the degree temperature is in the range from 300 to 370 K, which is much smaller than the current drift of a single MOSFET which is about 10000 V/m field signal.展开更多
文摘Introduction The high-energy photon source,which has been built in Huairou,Beijing,has high requirements on magnetic field dithering.Magnetic field dithering is mainly determined by the stability of the output current of the power supply.In order to ensure the stability of the output current of quadrupole magnet power supply,the power supply sampling control loop needs to be precisely designed.In this paper,a precision ADC sampling system based on internal temperature control is designed to carry out precise control of the sampling ADC.Materials In this design,precise ADC chip is used to complete the precise sampling of the system.The precise sampling system contains a DAC system for high-speed settings.Methods In order to verify the design of the system,high-precision quadrupolemagnet power supply is used for measurement.Conclusion The experimental results show that the temperature variation range of precision temperature control ADC system is±0.1°C.By using the precise temperature controlADCsystem,the output current stability of the high-precision quadrupole magnet power supply is effectively improved.
文摘A novel low temperature solid state electric field sensor is demonstrated as a promising sensor. The sensor is a type of constant voltage Wheatstone bridge whose resistors are four direct gate SOl MOSFET devices. It is demonstrated in theory that the output voltage signal is proportional to the electric field E, the temperature drift is about zero when the temperature is in the range from 200 to 400 K, and the doping concentration is in the range from 1 × 10^14 to 1 × 10^16 cm^-3. The experiment results indicate that the resolution of the sensor is about 3.27 mV for a 1000 V/m electric field at 300 K, and the voltage drift by an amount is about 47 V/m field signal when the degree temperature is in the range from 300 to 370 K, which is much smaller than the current drift of a single MOSFET which is about 10000 V/m field signal.