期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Comparison of Genetic Diversity and Growth Performance between the Selected Population and Hybridized Population of Litopenaeus vannamei at Low Temperature
1
作者 Li Dongyu Meng Xianhong +3 位作者 Kong Jie Luan Sheng Cao Baoxiang Luo Kun 《Animal Husbandry and Feed Science》 CAS 2018年第3期160-165,200,共7页
[Objective] This study was conducted to compare the genetic diversity and growth performance of two Litopenaeus vannamei populations at low temperature. [Method] One population(selected population, SP) was produced ... [Objective] This study was conducted to compare the genetic diversity and growth performance of two Litopenaeus vannamei populations at low temperature. [Method] One population(selected population, SP) was produced through inbreeding and 3 years of selection from seven popula- tions of L. vannamei introduced from the United States and Singapore. The other population (hybridized population, HP) was the F1 generation of the crosses between Population SP and some excellent populations introduced from South Korea and Singapore. The growth performance of the two populations at low temperature was compared, and the genetic diversity and genetic differentiation between the two populations were assessed using 13 microsatellite loci. [Result] The shrimps of population HP had better growth performance than those of population SP. The average body weight (BW) for population HP, which was (13.18±3.65) g/ind., was significantly higher than that of population SP, which was (12.20±3.14) g/ind. The coefficient of variation in body weight for population SP was 25.74%, and that for population HP was 27.69%. The other growth indices of popula- tion HP were all higher than those of population SP. One-way analysis of variance (ANOVA) indicated that there were highly significant differences in both BW and width of third abdominal segment (WTAS) between HP and SP(P〈0.001). The specific growth rate (SGR) and absolute growth rate (AGR) for population HP were (5.09±0.61) %/d and (0.26±0.60) g/d, respectively, while the SGR and AGR for population SP were (4.94±0.57) %/d and (0.24±0.63) g/d., both significantly lower than those of population HP (P〈0.001). Genetic diversity analysis revealed that the number of alleles (Na) of population HP (Na=7.9) was slightly higher than that of population SP (Na=7.6). The average polymorphic information content (PIC) of HP and SP populations was similar 0.63 and 0.62, both indicating high level of genetic diversity. The average observed heterozygosity (HQ) of HP and SP was 0.492 and 0.483, and the expected heterozygosity(He) was 0.675 and 0.663, respectively. Both Ho and He of population HP were higher than those of population SP, suggesting that HP had higher genetic diversity than population SP. Moreover, the mean of FsT values at the 13 microsatellite loci between HP and SP was 0.155 6, suggesting there was a significant genetic differentiation between the two populations. [Conclusion] Our results provide a theoretical basis for the breeding of new L. vannamei strains that are resistant to low temperature. 展开更多
关键词 Litopenaeus vannamei CROSSBREEDING resistance to low temperature Growth performance Genetic diversity
下载PDF
Low-molecular-weight supramolecular adhesive with resistance to low temperatures
2
作者 Shuanggen Wu Wenbo Wang +2 位作者 Changyong Cai Fenfang Li Shengyi Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期232-236,共5页
The design of adhesive materials with strong adhesion capacity at low temperatures is a great challenge.Herein,we report a low-molecular-weight supramolecular adhesive that exhibits good adhesion performance to variou... The design of adhesive materials with strong adhesion capacity at low temperatures is a great challenge.Herein,we report a low-molecular-weight supramolecular adhesive that exhibits good adhesion performance to various surfaces at low temperatures(from-18℃ to-80℃).Moreover,this supramolecular adhesive has good adhesion ability in the presence of water. 展开更多
关键词 Supramolecular adhesive low temperature resistance Underwater adhesion low-molecular-weight monomer Supramolecular adhesion
原文传递
Surface metallization of PTFE and PTFE composites by ion implantation for low-background electronic substrates in rare-event detection experiments 被引量:2
3
作者 Shao-Jun Zhang Yuan-Yuan Liu +5 位作者 Sha-Sha Lv Jian-Ping Cheng Bin Liao Pan Pang Zhi Deng Li He 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第7期37-47,共11页
Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for re... Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters,which are widely applied in dark matter and 0υββdetection experiments.The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments.To avoid adhesive bonding,PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer.Low-background PTFE matrix composites(m-PTFE)were selected to improve the electrical and mechanical properties of PTFE by introducing SiO_(2)/TiO_(2) particles.The microstructures,surface elements,and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation.PTFE and m-PTFE surfaces were found to be broken,degraded,and cross-linked by ion implantation,resulting in C=C conjugated double bonds,increased surface energy,and increased surface roughness.Comparably,the surface roughness,bond strength,and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE.Moreover,the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle.Therefore,the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures,while maintaining excellent electrical properties. 展开更多
关键词 Surface modification Polytetrafluoroethylene Ion implantation Surface metallization low temperature resistance
下载PDF
Hyperelastic Graphene Aerogels Reinforced by In‑suit Welding Polyimide Nano Fiber with Leaf Skeleton Structure and Adjustable Thermal Conductivity for Morphology and Temperature Sensing 被引量:1
4
作者 Weida Yin Mengmeng Qin +2 位作者 Huitao Yu Jinxu Sun Wei Feng 《Advanced Fiber Materials》 SCIE EI 2023年第3期1037-1049,共13页
Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due t... Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due to inadequate chemical con-nections.In addition,the heat-transfer performance of existing compression strain sensors under stress is unclear and lacks research,making it difficult to perform real-temperature detections.To address these issues,a hyperelastic polyimide fiber/graphene aerogel(PINF/GA)with a three-dimensional interconnected structure was fabricated by simple one-pot compound-ing and in-situ welding methods.The welding of fiber lap joints promotes in-suit formation of three-dimensional crosslinked networks of polyimide fibers,which can effectively avoid slidings between fibers to form reinforced ribs,preventing graphene from damage during compression.In particular,the inner core of the fiber maintains its macromolecular chain structure and toughness during welding.Thus,PINF/GA has good structural stabilities under a large strain compression(99%).Moreover,the thermal and electrical conductivities of PINF/GA could not only change with various stresses and strains but also keep the change steady at specific stresses and strains,with its thermal-conductivity change ratio reaching up to 9.8.Hyperelastic PINF/GA,with dynamically stable thermal and electrical conductivity,as well as high heat tolerance,shows broad applica-tion prospects as sensors in detecting the shapes and temperatures of unknown objects in extreme environments. 展开更多
关键词 Graphene aerogel Fiber welding Highly compressible High and low temperature resistance Cyclic stability Flexible tactile sensor
原文传递
Effect of Polydimethylsilxoane Molecular of Soft Segment on Novel Urethane-Siloxane Copolymers 被引量:1
5
作者 杨凯 戴泽亮 董擎之 《Journal of Donghua University(English Edition)》 EI CAS 2016年第1期38-45,共8页
Novel segmented urethane-siloxane copolymers were synthesized by a two-step bulk polymerization procedure using 4,4'-methylenediphenyl diisocyanate( MDI) and 1,4-butanediol( BDO)as the hard segment components and ... Novel segmented urethane-siloxane copolymers were synthesized by a two-step bulk polymerization procedure using 4,4'-methylenediphenyl diisocyanate( MDI) and 1,4-butanediol( BDO)as the hard segment components and novel polypropyleneoxide polyether( PPO) blocked polydimethylsilxoane( PDMS) α,ω-dihydroxy-( PPO-PDMS-PPO) as the soft segment component,where the hard segment content was 30% by weight,and the molar ratio of NCO / OH was 1. 02. A series of urethane-siloxane copolymers were prepared from different molecular weights of α,ω-dihydroxy-( PPO-PDMS-PPO). The soft segments were different in the molecular of PDMS block segment. Chemical structure,morphology,mechanical properties,surface properties and thermal properties of thermoplastic polyurethane( TPU) were investigated by Fourier transform infrared spectroscopy( FT-IR),scanning electron microscopy and energy dispersive X-ray spectroscopy( SEM-EDX),mechanical properties( MP) test,water contact angle( WCA) test,differential scanning calorimetry( DSC),thermogravimetric analysis( TGA), respectively. According to the obtained results, the hydrophobicity of silicone modified TPU promoted,surface WCA increased from 73° to 120°. Low temperature resistant performance was improved,and the glass transition temperature decreased from- 44. 2℃ to- 120. 8℃. Thermal stability was also improved,the beginning temperature of thermal degradation increased from 281 ℃to 299 ℃. 展开更多
关键词 α ω-dihydroxy-(PPO-PDMS-PPO) thermoplastic polyurethane HYDROPHOBICITY low temperature resistant performance thermal stability
下载PDF
Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts 被引量:5
6
作者 Quanming Liang Jian Li +3 位作者 Hong He Wenjun Liang Tiejun Zhang Xing Fan 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第4期153-159,共7页
The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had... The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had been investigated. CeO2 helped to improve the De-NOx activity and sulfur resistance. The optimal loading of CeO2 was 3% with the De-NOx efficiency reached 89.9% at 140℃. The results showed that the De-NOx activity of 3% CeO2-VWT catalysts by one-step method was the same as two-step method basically and reached the level of industrial applications, the N2 selectivity of catalysts was more than 99.2% between 110℃ and 320℃. In addition, CeO2 promoted the oxidation of NO to NO2, which adsorbed on the Lewis acid site (V5+-O) to form V5+-NO3 and inspired the fast SCR reaction. Not only the thermal stability but also the De-NOx activity of catalysts decreased with excess CeO2 competed with V2O5. Characterizations of catalysts were carried out by XRF, BET, XRD, TG and FT-IR. BET showed that the specific surface area of catalysts decreased with the loading of CeO2 increased, the active components content and specific surface area of catalysts decreased slightly after entering SO2. Ammonium sulfate species were formed in poisoned catalyst which had been investigated by XRF, BET, TG and FT-IR. The largest loss rate of weight fraction was 0.024%.℃-1 at 380℃ 390℃, which was in accordance with the decomposition temperature of NH4HSO4 and (NH4)2SO4, 展开更多
关键词 low temperature SCR De-NOx activity Sulfur resistance Ammonium sulfate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部