[Objective] To analyze the positioning of low-carbon agriculture development in local governments of China. [Method] The emissions of green-house gas, the connotation and characteristics of low-carbon agriculture, and...[Objective] To analyze the positioning of low-carbon agriculture development in local governments of China. [Method] The emissions of green-house gas, the connotation and characteristics of low-carbon agriculture, and the necessity of developing low-carbon agriculture were analyzed, obtaining the positioning and measures for the development of low-carbon agriculture in local government. [Result] Government plays a leading role in the development of low-carbon agriculture. The development of low-carbon agriculture can be promoted through the formulation of scientific low-carbon agricultural development plan, culturing new talents on low-carbon agriculture, promoting low-carbon agricultural technology, establishing low-carbon agricultural risk prevention mechanisms. [Conclusion] Making economy, environment and resources coordinated with each other, leading by the concept of scientific development with the concept of sustainable development, is where the future of agricultural development in China lies.展开更多
[Objective] To investigate the appropriate low-carbon agriculture model in Southern Jiangsu Province. [Method] Through the analysis of regional features in Southern Jiangsu and several matured low-carbon agriculture d...[Objective] To investigate the appropriate low-carbon agriculture model in Southern Jiangsu Province. [Method] Through the analysis of regional features in Southern Jiangsu and several matured low-carbon agriculture development models at present, the low-carbon agriculture development modes suitable for Southern Jiangsu were investigated, and corresponding supporting measures for the development of the models were put forward. [Result] Low-carbon agriculture is the environment- friendly agriculture which achieves low emissions, low pollution, high efficiency and high-yield through efficient recycling of energy and resources and continuous im- provements on ecological environment. With a variety of development models, the specific development model for practical use should be determined according to the local conditions, and supported by corresponding supporting measures, to achieve the rapid development of low-carbon agriculture. [Conclusion] This study laid the foundation for the development of low-carbon agriculture model in Southern Jiangsu.展开更多
Based on the trace of origin and development process of low-carbon economy, the paper defined the concept of low- carbon agriculture. As a case, the development of low-carbon advantage and disadvantage of agriculture ...Based on the trace of origin and development process of low-carbon economy, the paper defined the concept of low- carbon agriculture. As a case, the development of low-carbon advantage and disadvantage of agriculture in Heilongjiang Province made a systematic analysis of factors; it based on the empirical and comparative analysis of low-carbon development in Heilongjiang Province and put forward countermeasures and suggestions of agriculture. At last, the low-carbon agriculture was prospected in the future.展开更多
The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between developme...The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.展开更多
In order to reduce carbon emission in agricultural production,this paper has discussed the developmental trends of low-carbon agriculture in terms of developing precision agriculture,improving the efficiency of fertil...In order to reduce carbon emission in agricultural production,this paper has discussed the developmental trends of low-carbon agriculture in terms of developing precision agriculture,improving the efficiency of fertilizer utilization,scientific use of pesticides,water-saving irrigation,ecological control of pests and diseases,as well as energy conservation and emission reduction by agricultural machinery and other agricultural practices.展开更多
With the advent of low-carbon economy nowadays,the development of agriculture is necessary to adapt to the situation of global economic development,and transform the agricultural development models. This paper firstly...With the advent of low-carbon economy nowadays,the development of agriculture is necessary to adapt to the situation of global economic development,and transform the agricultural development models. This paper firstly gives an overview of low-carbon economy and lowcarbon agriculture,and then points out the possibility of developing the low-carbon agricultural economy in China,and describes the ways to develop the low-carbon agricultural economy. Finally,this paper puts forth the corresponding recommendations for the development of the lowcarbon agricultural economy.展开更多
Firstly,the status quo of low-carbon agriculture development in China was analyzed,and then advanced experience of developed countries in low-carbon agriculture development was introduced,finally ways of developing lo...Firstly,the status quo of low-carbon agriculture development in China was analyzed,and then advanced experience of developed countries in low-carbon agriculture development was introduced,finally ways of developing low-carbon agriculture in China were put forward.展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAAsS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.展开更多
The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic pe...The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.展开更多
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this c...Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.展开更多
In the recent past,much nanotechnology research has been done in an effort to increase agricultural productivity.The Green Revolution led to the careless use of pesticides and artificial fertilizers,which reduced soil ...In the recent past,much nanotechnology research has been done in an effort to increase agricultural productivity.The Green Revolution led to the careless use of pesticides and artificial fertilizers,which reduced soil biodiversity and led to the development of disease and insect resistance.This article highlights the worldwide development and status of precision agriculture.Precision agriculture utilizes technologies and principles to manage spatial and temporal variability in agricultural production to improve crop performance and environmental quality.In precision agriculture(PA),information technology(IT)is used to make sure that crops and soil receive exactly what they require for optimal productivity and health.Precision farming includes the use of hardware i.e.,a global positioning system(GPS)and geographic information system(GIS),different software of GIS,and traditional knowledge of agriculture management practices.The benefits of precision agriculture can be seen in both the economic and environmental aspects of agricultural production.Only nanoparticles or nanochips can transport materials to plants in a nanoparticle-mediated manner and create sophisticated biosensors for precision farming.Conventional fertilizers,insecticides,and herbicides can be nano encapsulated to provide exact doses to plants through a gradual,continuous release of nutrients and agrochemicals.The main topics included in this article are the variability of natural resources,variability management;administrative districts;the impact of precision farming technologies on farm profitability and the environment;innovations in sensors,controls,and remote sensing,information management;trends in global application and acceptance of precision farming technologies;potential and possibilities of technology along with challenges in agricultural modernization.Modern equipment and procedures based on nanotechnology have the ability to solve many of the issues in conventional agriculture and might transform this industry.There are many challenges in the implementation of smart agriculture equipment and approaches in thefield as this technique uses both hardware and software.The cost of labour for managing IoT devices and the cost-of-service registration are included in the system operational cost.Additionally,there are operating costs related to the use of energy,maintenance,and communication between IoT devices,gateways,and cloud servers.In this review,nanotechnology is explored as a potential tool in precision agriculture,as well as the advantages of nanoparticles in agriculture,such as the use of fertilizers.By using precision agriculture,the food production chain can be monitored and quality and quantity can be managed effectively.展开更多
Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o...Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.展开更多
Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o...Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.JIA publishes manuscripts in the categories of Commentary,Review,Research Article,Letter and Short Communication,focusing on the core subjects:Crop Science Horticulture·Plant ProtectionAnimal Science·Veterinary Medicine·Agro-ecosystem&Environment·Food Science·Agricultural Economics and Management·Agricultural Information Science.展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).展开更多
Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o...Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JiA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.展开更多
This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variatio...This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins.展开更多
Identifying the factors influencing farmers’adoption of low-carbon technologies(FA)and understanding their impacts are essential for shaping effective agricultural policies amied at emission reduction and carbon sequ...Identifying the factors influencing farmers’adoption of low-carbon technologies(FA)and understanding their impacts are essential for shaping effective agricultural policies amied at emission reduction and carbon sequestration in China.This study employs a meta-analysis of 122 empirical studies,delves into 23 driving factors affecting FA and addresses the inconsistencies present in the existing literature.We systematically examine the effect size,source of heterogeneity,and time-accumulation effect of the driving factors on FA.We find that significant heterogeneity in the factors influencing FA,except for farming experience,sources of heterogeneity from the survey zone,methodology model,technological attributes,report source,financial support,and the sampling year.Additionally,age,farming experience,and adoption cost negatively correlate with FA.In contrast,educational level,health status,technical training,economic and welfare cognition,land contract,soil quality,terrain,information accessibility,demonstration,government promotion,government regulation,government support,agricultural cooperatives member,peer effect,and agricultural income ratio demonstrate a positive correlation.Especially,demonstration and age show a particularly strong correlation.Finally,the effect of demonstration,age,economic and welfare cognition,farming experience,land contract,soil quality,information accessibility,government promotion,and support,as well as agricultural cooperative membership and peer effects on FA,are generally stable but exhibit varying degrees of attenuation over time.The effect of village cadre,family income,farm scale,gender,health status,technical training,and off-farm work on FA show notable temporal shifts and maintain a weak correlation with FA.This study contributes to shaping China’s current low-carbon agriculture policies across various regions.It encourages policymakers to comprehensively consider the stability of key factors,other potential factors,technological attributes,rural socio-economic context,and their interrelations.展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIAis a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.展开更多
Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by ...Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).展开更多
基金Supported by the National Natural Science Foundation of China(70901035)~~
文摘[Objective] To analyze the positioning of low-carbon agriculture development in local governments of China. [Method] The emissions of green-house gas, the connotation and characteristics of low-carbon agriculture, and the necessity of developing low-carbon agriculture were analyzed, obtaining the positioning and measures for the development of low-carbon agriculture in local government. [Result] Government plays a leading role in the development of low-carbon agriculture. The development of low-carbon agriculture can be promoted through the formulation of scientific low-carbon agricultural development plan, culturing new talents on low-carbon agriculture, promoting low-carbon agricultural technology, establishing low-carbon agricultural risk prevention mechanisms. [Conclusion] Making economy, environment and resources coordinated with each other, leading by the concept of scientific development with the concept of sustainable development, is where the future of agricultural development in China lies.
基金Supported by the National Natural Science Foundation of China(70901035)~~
文摘[Objective] To investigate the appropriate low-carbon agriculture model in Southern Jiangsu Province. [Method] Through the analysis of regional features in Southern Jiangsu and several matured low-carbon agriculture development models at present, the low-carbon agriculture development modes suitable for Southern Jiangsu were investigated, and corresponding supporting measures for the development of the models were put forward. [Result] Low-carbon agriculture is the environment- friendly agriculture which achieves low emissions, low pollution, high efficiency and high-yield through efficient recycling of energy and resources and continuous im- provements on ecological environment. With a variety of development models, the specific development model for practical use should be determined according to the local conditions, and supported by corresponding supporting measures, to achieve the rapid development of low-carbon agriculture. [Conclusion] This study laid the foundation for the development of low-carbon agriculture model in Southern Jiangsu.
基金Supported by National Natural Science Foundation (71173035)Scientific and Technological Projects in Heilongjiang Province (GC10D206)Humanities and Social Science Project in Heilongjiang Province Department of Education (12514049)
文摘Based on the trace of origin and development process of low-carbon economy, the paper defined the concept of low- carbon agriculture. As a case, the development of low-carbon advantage and disadvantage of agriculture in Heilongjiang Province made a systematic analysis of factors; it based on the empirical and comparative analysis of low-carbon development in Heilongjiang Province and put forward countermeasures and suggestions of agriculture. At last, the low-carbon agriculture was prospected in the future.
基金Supported by the Project of Jiangsu Provincial Department of Education (2011SJD630046)the Project of Huai'an Federation of Social Sciences (C-11-15)
文摘The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.
基金Supported by Special Post-expo Project Funded by the Ministry of Science and Technology(2010BAK69B18)Special Scientific and Technical Project in Chongming of Shanghai Science and Technology Commission(10DZ1960101)
文摘In order to reduce carbon emission in agricultural production,this paper has discussed the developmental trends of low-carbon agriculture in terms of developing precision agriculture,improving the efficiency of fertilizer utilization,scientific use of pesticides,water-saving irrigation,ecological control of pests and diseases,as well as energy conservation and emission reduction by agricultural machinery and other agricultural practices.
基金Supported by Business Management Cultivation Discipline of Southwestern University Rongchang Campus
文摘With the advent of low-carbon economy nowadays,the development of agriculture is necessary to adapt to the situation of global economic development,and transform the agricultural development models. This paper firstly gives an overview of low-carbon economy and lowcarbon agriculture,and then points out the possibility of developing the low-carbon agricultural economy in China,and describes the ways to develop the low-carbon agricultural economy. Finally,this paper puts forth the corresponding recommendations for the development of the lowcarbon agricultural economy.
基金Supported by the Planning Project of Philosophy and Social Sciences in Beijing City in 2011(11JGB035)Soft Science Subject of Henan Province in 2013(132400410012)
文摘Firstly,the status quo of low-carbon agriculture development in China was analyzed,and then advanced experience of developed countries in low-carbon agriculture development was introduced,finally ways of developing low-carbon agriculture in China were put forward.
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAAsS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.
基金Supported by " Research on The Control Technology of Subtropical Agriculture Pollution System" Special Project of National Environment Protection Public Welfare Industry Science Research "Research on The Construction Strategy of Ecological Civilization" Development Plan Research Project of State Development and Reform Commission+1 种基金Xiangxiang " High-output and Efficient Cultivation of High Quality Rice and Processing Technology Industrialization Demonstration " in The Plan Test Site of National Science and Technology Enriching People and Developing County Special Project Action" Xiangxiang Middle and Long-term Development Plan of Modern Agriculture" of Subtropical Agriculture Ecology Institute in Chinese Academy of Science
文摘The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.
基金support provided by the UKRI via Grant No.EP/T024607/1Royal Society via grant number IES\R2\222208.
文摘Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
文摘In the recent past,much nanotechnology research has been done in an effort to increase agricultural productivity.The Green Revolution led to the careless use of pesticides and artificial fertilizers,which reduced soil biodiversity and led to the development of disease and insect resistance.This article highlights the worldwide development and status of precision agriculture.Precision agriculture utilizes technologies and principles to manage spatial and temporal variability in agricultural production to improve crop performance and environmental quality.In precision agriculture(PA),information technology(IT)is used to make sure that crops and soil receive exactly what they require for optimal productivity and health.Precision farming includes the use of hardware i.e.,a global positioning system(GPS)and geographic information system(GIS),different software of GIS,and traditional knowledge of agriculture management practices.The benefits of precision agriculture can be seen in both the economic and environmental aspects of agricultural production.Only nanoparticles or nanochips can transport materials to plants in a nanoparticle-mediated manner and create sophisticated biosensors for precision farming.Conventional fertilizers,insecticides,and herbicides can be nano encapsulated to provide exact doses to plants through a gradual,continuous release of nutrients and agrochemicals.The main topics included in this article are the variability of natural resources,variability management;administrative districts;the impact of precision farming technologies on farm profitability and the environment;innovations in sensors,controls,and remote sensing,information management;trends in global application and acceptance of precision farming technologies;potential and possibilities of technology along with challenges in agricultural modernization.Modern equipment and procedures based on nanotechnology have the ability to solve many of the issues in conventional agriculture and might transform this industry.There are many challenges in the implementation of smart agriculture equipment and approaches in thefield as this technique uses both hardware and software.The cost of labour for managing IoT devices and the cost-of-service registration are included in the system operational cost.Additionally,there are operating costs related to the use of energy,maintenance,and communication between IoT devices,gateways,and cloud servers.In this review,nanotechnology is explored as a potential tool in precision agriculture,as well as the advantages of nanoparticles in agriculture,such as the use of fertilizers.By using precision agriculture,the food production chain can be monitored and quality and quantity can be managed effectively.
文摘Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.
文摘Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.JIA publishes manuscripts in the categories of Commentary,Review,Research Article,Letter and Short Communication,focusing on the core subjects:Crop Science Horticulture·Plant ProtectionAnimal Science·Veterinary Medicine·Agro-ecosystem&Environment·Food Science·Agricultural Economics and Management·Agricultural Information Science.
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).
文摘Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JiA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.
文摘This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins.
基金supported by the National Social Science Fund of China(19BGL152)the Sichuan Technology Planning Project,China(2022JDTD0022)the Provincial College Student Innovation and Entrepreneurship Training Program of Sichuan Province,China(S202310626018).
文摘Identifying the factors influencing farmers’adoption of low-carbon technologies(FA)and understanding their impacts are essential for shaping effective agricultural policies amied at emission reduction and carbon sequestration in China.This study employs a meta-analysis of 122 empirical studies,delves into 23 driving factors affecting FA and addresses the inconsistencies present in the existing literature.We systematically examine the effect size,source of heterogeneity,and time-accumulation effect of the driving factors on FA.We find that significant heterogeneity in the factors influencing FA,except for farming experience,sources of heterogeneity from the survey zone,methodology model,technological attributes,report source,financial support,and the sampling year.Additionally,age,farming experience,and adoption cost negatively correlate with FA.In contrast,educational level,health status,technical training,economic and welfare cognition,land contract,soil quality,terrain,information accessibility,demonstration,government promotion,government regulation,government support,agricultural cooperatives member,peer effect,and agricultural income ratio demonstrate a positive correlation.Especially,demonstration and age show a particularly strong correlation.Finally,the effect of demonstration,age,economic and welfare cognition,farming experience,land contract,soil quality,information accessibility,government promotion,and support,as well as agricultural cooperative membership and peer effects on FA,are generally stable but exhibit varying degrees of attenuation over time.The effect of village cadre,family income,farm scale,gender,health status,technical training,and off-farm work on FA show notable temporal shifts and maintain a weak correlation with FA.This study contributes to shaping China’s current low-carbon agriculture policies across various regions.It encourages policymakers to comprehensively consider the stability of key factors,other potential factors,technological attributes,rural socio-economic context,and their interrelations.
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIAis a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.
文摘Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).