Importance:It remained unclear that the efficacy comparison between low-dose immune tolerance induction(LD-ITI)incorporating immunosuppressants(IS)when severe hemophilia A(SHA)patients had inhibitor-titer≥200 Bethesd...Importance:It remained unclear that the efficacy comparison between low-dose immune tolerance induction(LD-ITI)incorporating immunosuppressants(IS)when severe hemophilia A(SHA)patients had inhibitor-titer≥200 Bethesda Units(BU)/mL(LD-ITI-IS^(200) regimen)and LD-ITI combining with IS when SHA patients had inhibitor-titer≥40 BU/mL(LD-ITI-IS^(40) regimen).Objective:To compare the efficacy of the LD-ITI-IS^(200) regimen with that of the LD-ITI-IS^(40) regimen for SHA patients with high-titer inhibitors.Methods:A prospective cohort study on patients receiving LD-ITI-IS^(200) compared to those receiving LD-ITI-IS^(40) from January 2021 to December 2023.Both received LD-ITI[FVIII 50 IU/kg every other day].IS(rituximab+prednisone)was added when peak inhibitor tier≥200 BU/mL in the LD-ITI-IS^(200) regimen and≥40 BU/mL in the LD-ITI-IS^(40) regimen.Success is defined as a negative inhibitor plus FVIII recovery≥66%of the expected.Results:We enrolled 30 patients on LD-ITI-IS^(200) and 64 patients on LD-ITI-IS^(40),with similar baseline clinical characteristics.A lower IS-use rate was discovered in the LD-ITI-IS^(200) regimen compared to the LD-ITI-IS^(40) regimen(30.0%vs.62.5%).The two regimens(LD-ITI-IS^(200) vs.LD-ITI-IS^(40))had similar success rate(70.0%vs.79.7%),median time to success(9.4 vs.10.6 months),and annualized bleeding rate during ITI(3.7 vs.2.8).The cost to success was lower for LD-ITI-IS^(200) than for LD-ITI-IS^(40)(2107 vs.3256 US Dollar/kg).Among patients with peak inhibitor-titer 40-199 BU/mL,10 non-IS-using(on LD-ITI-IS^(200) regimen)and 28 IS-using(on LD-ITI-IS^(40) regimen)had similar success rates(70.0%vs.78.6%)and time to success(9.0 vs.8.8 months).Interpretation:In LD-ITI,IS are not necessary for inhibitor titer<200 BU/mL.展开更多
Microglia,which are tissue-resident macrophages in the brain,play a central role in the brain innate immunity and contribute to the maintenance of brain homeostasis.Lipopolysaccharide is a component of the outer membr...Microglia,which are tissue-resident macrophages in the brain,play a central role in the brain innate immunity and contribute to the maintenance of brain homeostasis.Lipopolysaccharide is a component of the outer membrane of gram-negative bacteria,and activates immune cells including microglia via Toll-like receptor 4 signaling.Lipopolysaccharide is generally known as an endotoxin,as administration of highdose lipopolysaccharide induces potent systemic inflammation.Also,it has long been recognized that lipopolysaccharide exacerbates neuroinflammation.In contrast,our study revealed that oral administration of lipopolysaccharide ameliorates Alzheimer’s disease pathology and suggested that neuroprotective microglia are involved in this phenomenon.Additionally,other recent studies have accumulated evidence demonstrating that controlled immune training with low-dose lipopolysaccharide prevents neuronal damage by transforming the microglia into a neuroprotective phenotype.Therefore,lipopolysaccharide may not a mere inflammatory inducer,but an immunomodulator that can lead to neuroprotective effects in the brain.In this review,we summarized current studies regarding neuroprotective microglia transformed by immune training with lipopolysaccharide.We state that microglia transformed by lipopolysaccharide preconditioning cannot simply be characterized by their general suppression of proinflammatory mediators and general promotion of anti-inflammatory mediators,but instead must be described by their complex profile comprising various molecules related to inflammatory regulation,phagocytosis,neuroprotection,anti-apoptosis,and antioxidation.In addition,microglial transformation seems to depend on the dose of lipopolysaccharide used during immune training.Immune training of neuroprotective microglia using lowdose lipopolysaccharide,especially through oral lipopolysaccharide administration,may represent an innovative prevention or treatment for neurological diseases;however more vigorous studies are still required to properly modulate these treatments.展开更多
基金Capital Health Development Research Project,Grant/Award Number:2022-2-2093Beijing Research Ward Construction Demonstration Unit Project,Grant/Award Number:BCRW202101+1 种基金National Natural Science Foundation of China,Grant/Award Number:82270133Beijing Municipal Scienceand Technology Commission,Grant/Award Number:Z221100007422067。
文摘Importance:It remained unclear that the efficacy comparison between low-dose immune tolerance induction(LD-ITI)incorporating immunosuppressants(IS)when severe hemophilia A(SHA)patients had inhibitor-titer≥200 Bethesda Units(BU)/mL(LD-ITI-IS^(200) regimen)and LD-ITI combining with IS when SHA patients had inhibitor-titer≥40 BU/mL(LD-ITI-IS^(40) regimen).Objective:To compare the efficacy of the LD-ITI-IS^(200) regimen with that of the LD-ITI-IS^(40) regimen for SHA patients with high-titer inhibitors.Methods:A prospective cohort study on patients receiving LD-ITI-IS^(200) compared to those receiving LD-ITI-IS^(40) from January 2021 to December 2023.Both received LD-ITI[FVIII 50 IU/kg every other day].IS(rituximab+prednisone)was added when peak inhibitor tier≥200 BU/mL in the LD-ITI-IS^(200) regimen and≥40 BU/mL in the LD-ITI-IS^(40) regimen.Success is defined as a negative inhibitor plus FVIII recovery≥66%of the expected.Results:We enrolled 30 patients on LD-ITI-IS^(200) and 64 patients on LD-ITI-IS^(40),with similar baseline clinical characteristics.A lower IS-use rate was discovered in the LD-ITI-IS^(200) regimen compared to the LD-ITI-IS^(40) regimen(30.0%vs.62.5%).The two regimens(LD-ITI-IS^(200) vs.LD-ITI-IS^(40))had similar success rate(70.0%vs.79.7%),median time to success(9.4 vs.10.6 months),and annualized bleeding rate during ITI(3.7 vs.2.8).The cost to success was lower for LD-ITI-IS^(200) than for LD-ITI-IS^(40)(2107 vs.3256 US Dollar/kg).Among patients with peak inhibitor-titer 40-199 BU/mL,10 non-IS-using(on LD-ITI-IS^(200) regimen)and 28 IS-using(on LD-ITI-IS^(40) regimen)had similar success rates(70.0%vs.78.6%)and time to success(9.0 vs.8.8 months).Interpretation:In LD-ITI,IS are not necessary for inhibitor titer<200 BU/mL.
基金This work was funded by Control of Innate Immunity Technology Research Association,a grant of Cross-ministerial Strategic Innovation Promotion Program,SIP-No.14533073(to GIS)from the Council for Science from Technology and Innovation(CSTI)in Cabinet Office of Japanese Government and the National Agriculture and Food Research Organization(NARO).
文摘Microglia,which are tissue-resident macrophages in the brain,play a central role in the brain innate immunity and contribute to the maintenance of brain homeostasis.Lipopolysaccharide is a component of the outer membrane of gram-negative bacteria,and activates immune cells including microglia via Toll-like receptor 4 signaling.Lipopolysaccharide is generally known as an endotoxin,as administration of highdose lipopolysaccharide induces potent systemic inflammation.Also,it has long been recognized that lipopolysaccharide exacerbates neuroinflammation.In contrast,our study revealed that oral administration of lipopolysaccharide ameliorates Alzheimer’s disease pathology and suggested that neuroprotective microglia are involved in this phenomenon.Additionally,other recent studies have accumulated evidence demonstrating that controlled immune training with low-dose lipopolysaccharide prevents neuronal damage by transforming the microglia into a neuroprotective phenotype.Therefore,lipopolysaccharide may not a mere inflammatory inducer,but an immunomodulator that can lead to neuroprotective effects in the brain.In this review,we summarized current studies regarding neuroprotective microglia transformed by immune training with lipopolysaccharide.We state that microglia transformed by lipopolysaccharide preconditioning cannot simply be characterized by their general suppression of proinflammatory mediators and general promotion of anti-inflammatory mediators,but instead must be described by their complex profile comprising various molecules related to inflammatory regulation,phagocytosis,neuroprotection,anti-apoptosis,and antioxidation.In addition,microglial transformation seems to depend on the dose of lipopolysaccharide used during immune training.Immune training of neuroprotective microglia using lowdose lipopolysaccharide,especially through oral lipopolysaccharide administration,may represent an innovative prevention or treatment for neurological diseases;however more vigorous studies are still required to properly modulate these treatments.