The low-energy muon facility at PSI provides nearly fully polarized positive muons with tunable energies in the ke V range to carry out muon spin rotation(LE-μSR)experiments with nanometer depth resolution on thin fi...The low-energy muon facility at PSI provides nearly fully polarized positive muons with tunable energies in the ke V range to carry out muon spin rotation(LE-μSR)experiments with nanometer depth resolution on thin films,heterostructures, and near-surface regions. The low-energy muon beam is focused and transported to the sample by electrostatic lenses. In order to achieve a minimum beam spot size at the sample position and to enable the steering of the beam in the horizontal and vertical direction, a special electrostatic device has been implemented close to the sample position. It consists of a cylinder at ground potential followed by four conically shaped electrodes,which can be operated at different electric potential. In LE-μSR experiments, an electric field at the sample along the beam direction can be applied to accelerate/decelerate muons to different energies(0.5–30 keV). Additionally, a horizontal or vertical magnetic field can be superimposed for transverse or longitudinal field μSR experiments. The focusing properties of the conical lens in the presence of these additional electric and magnetic fields have been investigated and optimized by Geant4 simulations. Some experimental tests were also performed and show that the simulation well describes the experimental setup.展开更多
A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which...A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which is based on superconducting solenoids,superferric dipoles and room-temperature magnets,is presented herein.Various muon beams,including surface muons,decay muons and low energy muons,have been developed for multipurpose applications.The optics design and simulation results of the trunk beamline and branch beamlines are presented.With a proton beam power of 25 kW at a standalone target station that consists of a conical graphite target and high-field superconducting solenoids,the muon beam intensity in the trunk beamline varies from 10^(7)/s for surface muons to 10^(10)/s for high-momentum decay muons.And at the endstations,these values vary from 10^(5)/s for surface muons to 10^(8)/s for decay muons.展开更多
A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon pre...A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon precession predicted by the Model is not the same as observed. The researchers offer many posteriori atheoretical hypotheses as possible explanations of their findings, but no fundamental theoretical understanding of the near discovery is among them. This article describes both an explication for the unexpected result and describes its underlying mechanism based on an existing cosmological theory, the Probabilistic Spacetime Theory. The paper also discusses the potential value of this theory.展开更多
Considering the significance of low-energy electrons(LEEs;0–20 eV) in radiobiology, the sensitization potential of gold nanoparticles(AuNPs) as high-flux LEE emitters when irradiated with sub-keV electrons has been s...Considering the significance of low-energy electrons(LEEs;0–20 eV) in radiobiology, the sensitization potential of gold nanoparticles(AuNPs) as high-flux LEE emitters when irradiated with sub-keV electrons has been suggested. In this study, a track-structure Monte Carlo simulation code using the dielectric theory was developed to simulate the transport of electrons below 50 keV in gold. In this code, modifications, particularly for elastic scattering, are implemented for a more precise description of the LEE emission in secondary electron emission. This code was validated using the secondary electron yield and backscattering coefficient. To ensure dosimetry accuracy, we further verified the code for energy deposition calculations using the Monte Carlo toolkit, Geant4. The development of this code provides a basis for future studies regarding the role of AuNPs in targeted radionuclide radiotherapy.展开更多
This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 20...This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 2012. Specifically, the study examined the effects of atmospheric pressure, air temperature, and relative humidity on CR muons at different time scales (annual, seasonal, and monthly). The results of the analysis revealed that atmospheric pressure and air temperature had a negative impact on CR muons, while relative humidity had a positive impact. Although air temperature and relative humidity had small mean values across all time scales, their coefficients varied significantly from month to month and season to season. In addition, the study conducted multivariable correlation analyses for each day, which showed that pressure coefficients had consistently negative mean values, while the temperature and humidity coefficients had varying effects, ranging from positive to negative values. The reasons for the variations in the coefficients are not yet fully understood, but the study proposed several possible terrestrial and extraterrestrial explanations. These findings provide important insights into the complex interactions between the Earth’s atmosphere and cosmic rays, which can contribute to a better understanding of the potential impacts of cosmic rays on the Earth’s climate and environment.展开更多
In the low energy realization of the quirk assisted Standard Model,the couplings between the exotic particles"quirks"and gauge bosons may contribute to the W mass and muon g−2 anomaly reported by FermiLab.We...In the low energy realization of the quirk assisted Standard Model,the couplings between the exotic particles"quirks"and gauge bosons may contribute to the W mass and muon g−2 anomaly reported by FermiLab.We calculate the contributions from supersymmetric quirk particles as an example.By imposing the theoretical constraints,we determined that the CDF II W-boson mass increment strictly constrains the mixing and coupling parameters and the quirk mass mF,while the muon g−2 anomaly cannot be solely attributed to the involvement of exotic particles,considering their significantly large masses.展开更多
It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It ...It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It is the purpose of this paper to calculate the charges and the size of the electron neutrino, the muon neutrino, and the tau neutrino based on data available of their rest masses using the charges and rest masses of the electron, muon, and tau leptons from the Standard Model of Particle Physics Table. We base our calculations on the premise that Energy can create both Mass and Charge. Charge by itself is not conserved in any process that produces neutrinos. Only Total Energy is conserved.展开更多
基金a scholarship from the China Scholarship Council (CSC)financial support from PSI for her stay at PSI
文摘The low-energy muon facility at PSI provides nearly fully polarized positive muons with tunable energies in the ke V range to carry out muon spin rotation(LE-μSR)experiments with nanometer depth resolution on thin films,heterostructures, and near-surface regions. The low-energy muon beam is focused and transported to the sample by electrostatic lenses. In order to achieve a minimum beam spot size at the sample position and to enable the steering of the beam in the horizontal and vertical direction, a special electrostatic device has been implemented close to the sample position. It consists of a cylinder at ground potential followed by four conically shaped electrodes,which can be operated at different electric potential. In LE-μSR experiments, an electric field at the sample along the beam direction can be applied to accelerate/decelerate muons to different energies(0.5–30 keV). Additionally, a horizontal or vertical magnetic field can be superimposed for transverse or longitudinal field μSR experiments. The focusing properties of the conical lens in the presence of these additional electric and magnetic fields have been investigated and optimized by Geant4 simulations. Some experimental tests were also performed and show that the simulation well describes the experimental setup.
基金supported by the National Natural Science Foundation of China(Nos.11527811 and 12035017).
文摘A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which is based on superconducting solenoids,superferric dipoles and room-temperature magnets,is presented herein.Various muon beams,including surface muons,decay muons and low energy muons,have been developed for multipurpose applications.The optics design and simulation results of the trunk beamline and branch beamlines are presented.With a proton beam power of 25 kW at a standalone target station that consists of a conical graphite target and high-field superconducting solenoids,the muon beam intensity in the trunk beamline varies from 10^(7)/s for surface muons to 10^(10)/s for high-momentum decay muons.And at the endstations,these values vary from 10^(5)/s for surface muons to 10^(8)/s for decay muons.
文摘A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon precession predicted by the Model is not the same as observed. The researchers offer many posteriori atheoretical hypotheses as possible explanations of their findings, but no fundamental theoretical understanding of the near discovery is among them. This article describes both an explication for the unexpected result and describes its underlying mechanism based on an existing cosmological theory, the Probabilistic Spacetime Theory. The paper also discusses the potential value of this theory.
基金supported by the National Natural Science Foundation of China (Nos. 12004180, 21906083, 11975122, and 22006067)the Natural Science Foundation of Jiangsu Province (No. BK20190384)the Fundamental Research Funds for the Central Universities (Nos. NE2020006, NS2022095)。
文摘Considering the significance of low-energy electrons(LEEs;0–20 eV) in radiobiology, the sensitization potential of gold nanoparticles(AuNPs) as high-flux LEE emitters when irradiated with sub-keV electrons has been suggested. In this study, a track-structure Monte Carlo simulation code using the dielectric theory was developed to simulate the transport of electrons below 50 keV in gold. In this code, modifications, particularly for elastic scattering, are implemented for a more precise description of the LEE emission in secondary electron emission. This code was validated using the secondary electron yield and backscattering coefficient. To ensure dosimetry accuracy, we further verified the code for energy deposition calculations using the Monte Carlo toolkit, Geant4. The development of this code provides a basis for future studies regarding the role of AuNPs in targeted radionuclide radiotherapy.
文摘This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 2012. Specifically, the study examined the effects of atmospheric pressure, air temperature, and relative humidity on CR muons at different time scales (annual, seasonal, and monthly). The results of the analysis revealed that atmospheric pressure and air temperature had a negative impact on CR muons, while relative humidity had a positive impact. Although air temperature and relative humidity had small mean values across all time scales, their coefficients varied significantly from month to month and season to season. In addition, the study conducted multivariable correlation analyses for each day, which showed that pressure coefficients had consistently negative mean values, while the temperature and humidity coefficients had varying effects, ranging from positive to negative values. The reasons for the variations in the coefficients are not yet fully understood, but the study proposed several possible terrestrial and extraterrestrial explanations. These findings provide important insights into the complex interactions between the Earth’s atmosphere and cosmic rays, which can contribute to a better understanding of the potential impacts of cosmic rays on the Earth’s climate and environment.
基金Supported by the National Natural Science Foundation of China (12075213)。
文摘In the low energy realization of the quirk assisted Standard Model,the couplings between the exotic particles"quirks"and gauge bosons may contribute to the W mass and muon g−2 anomaly reported by FermiLab.We calculate the contributions from supersymmetric quirk particles as an example.By imposing the theoretical constraints,we determined that the CDF II W-boson mass increment strictly constrains the mixing and coupling parameters and the quirk mass mF,while the muon g−2 anomaly cannot be solely attributed to the involvement of exotic particles,considering their significantly large masses.
文摘It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It is the purpose of this paper to calculate the charges and the size of the electron neutrino, the muon neutrino, and the tau neutrino based on data available of their rest masses using the charges and rest masses of the electron, muon, and tau leptons from the Standard Model of Particle Physics Table. We base our calculations on the premise that Energy can create both Mass and Charge. Charge by itself is not conserved in any process that produces neutrinos. Only Total Energy is conserved.