期刊文献+
共找到43,615篇文章
< 1 2 250 >
每页显示 20 50 100
Low-frequency oscillation of train-network system considering traction power supply mode
1
作者 Yuchen Liu Xiaoqin Lyu +1 位作者 Mingyuan Chang Qiqi Yang 《Railway Engineering Science》 EI 2024年第2期244-256,共13页
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra... The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink. 展开更多
关键词 low-frequency oscillation Train-network system Modal analysis Bilateral power supply Participation factor
下载PDF
A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures
2
作者 Yan-Xiao He Shang-Xu Wang +9 位作者 Gen-Yang Tang Chao Sun Hong-Bing Li San-Yi Yuan Xian Wei Li-Deng Gan Xiao-Feng Dai Qiang Ge Peng-Peng Wei Hui-Qing Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期162-181,共20页
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and... Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion. 展开更多
关键词 low-frequency measurements Dispersion and attenuation Rock physics Fluid flow
下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
3
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND Vibration attenuation low-frequency ultrasound vibration Transmission loss
下载PDF
Current optimization-based control of dual three-phase PMSM for low-frequency temperature swing reduction
4
作者 Linlin Lu Xueqing Wang +3 位作者 Luhan Jin Qiong Liu Yun Zhang Yao Mao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期238-246,共9页
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur... In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction. 展开更多
关键词 Dual three-phase PMSM low-frequency temperature swing Copper loss Current optimization Connected neutral points
下载PDF
High-order Bragg forward scattering and frequency shift of low-frequency underwater acoustic field by moving rough sea surface
5
作者 莫亚枭 张朝金 +2 位作者 鹿力成 孙启航 马力 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期459-470,共12页
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi... Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves. 展开更多
关键词 high-order Bragg scattering frequency shift low-frequency acoustic field moving rough sea surface
下载PDF
Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
6
作者 吴明兴 谢楷 +3 位作者 刘艳 徐晗 张宝 田得阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期519-530,共12页
A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic... A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma. 展开更多
关键词 low-frequency alternating magnetic field phase shift shock-tube plasma diagnosis electron density collision frequency
下载PDF
Seismic stability of expansive soil slopes reinforced by anchor cables using a modified horizontal slice method
7
作者 Wang Long Chen Guoxing +3 位作者 Hu Wei Zhou Enquan Feng Jianxue Huang Anping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期377-387,共11页
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak... Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa. 展开更多
关键词 limit analysis expansive soil slope matric suction anchor cable pseudo-dynamic analysis
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables
8
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Three-dimensional limit variation analysis on the ultimate pullout capacity of the anchor cables based on the Hoek-Brown failure criterion
9
作者 ZUO Shi ZHAO Lianheng HU Shihong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1036-1047,共12页
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat... Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method. 展开更多
关键词 Anchor cable Ultimate pullout capacity(UPC) Failure model Variation analysis Hoek-Brown failure criterion
下载PDF
A bio-inspired spider-like structure isolator for low-frequency vibration 被引量:1
10
作者 Guangdong SUI Shuai HOU +5 位作者 Xiaofan ZHANG Xiaobiao SHAN Chengwei HOU Henan SONG Weijie HOU Jianming LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1263-1286,共24页
This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The ... This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The curved beam is simplified as an inclined horizontal spring,and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator.The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region.The harmonic balance method(HBM)is used to explore the effects of the excitation amplitude,damping ratio,and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance,and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method(RK-4).The experimental data of the QZS isolator prototype are fitted to a ninth-degree polynomial,and the RK-4 can theoretically predict the experimental results.The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator.The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz,and it can isolate 90%of the excitation signal at 7 Hz.The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators. 展开更多
关键词 bionic isolation structure curved beam nonlinear stiffness quasi-zero stiffness(QzS) low-frequency vibration isolator
下载PDF
New algorithm of shape-finding of suspension bridge with spatial cables
11
作者 Xiao-Kang Deng Zhuo Deng Xin Ren 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期33-40,共8页
A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this... A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this paper,the stress analysis of the main cable is carried out,and the relationship between the slope change and the coordinate change is found.This paper also discussed how to find the minimum slope point of symmetrical or asymmetric main cable,and the deformation compatibility equation is established and solved to obtain the shape of main cable.The algorithm in this paper can ensure the convergence of the solution for the suspension bridge with spatial cables.The calculation accuracy is high through the demonstration of the calculation examples. 展开更多
关键词 Spatial cables Suspenders Shape-finding Slope of cable Coupling Unequal height main tower
下载PDF
Observation of low-frequency oscillation in argon helicon discharge
12
作者 朱婉莹 崔瑞林 +2 位作者 韩若愚 何锋 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期86-94,共9页
We present here a kind of low-frequency oscillation in argon helicon discharge with a half helical antenna.This time-dependent instability shows a global quasi-periodic oscillation of plasma density and electron tempe... We present here a kind of low-frequency oscillation in argon helicon discharge with a half helical antenna.This time-dependent instability shows a global quasi-periodic oscillation of plasma density and electron temperature,with a typical frequency of a few tens of Hz which increases with external magnetic field as well as radiofrequency(RF)power.The relative oscillation amplitude decreases with magnetic field and RF power,but the rising time and pulse width do not change significantly under different discharge conditions.The oscillation can only be observed in some specific conditions of low magnetic fields and low RF power when the gas flows in from one end of the discharge area and out from another end.This global instability is suggested to be attributed to the pressure instability of neutral depletion,which is the result of compound action of gas depletion by heating expansion and gas replenishment from upstream.There are two kinds of oscillations,large and small amplitude oscillations,occurring in different discharge modes.This study could be a good verification of and complement to earlier experiments.This kind of spontaneous pulse phenomenon is also helpful in realizing a pulsing plasma source without a pulsed power supply. 展开更多
关键词 helicon plasma low-frequency oscillation global instability neutral depletion
下载PDF
A drift-kinetic perturbed Lagrangian for low-frequency nonideal MHD applications
13
作者 徐国盛 伍兴权 胡友俊 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第7期35-41,共7页
We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Her... We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Here,we rederive the expression for the perturbed Lagrangian within the framework of nonideal MHD using the ordering system for the low-frequency largescale MHD in a low-beta plasma.The obtained perturbed Lagrangian is consistent with Chen's gyrokinetic theory[Chen L and Zonca F 2016 Rev.Mod.Phys.88015008],where the terms related to the field curvature and gradient are small quantities of higher order and thus negligible.As the perturbed Lagrangian has been widely used in the literature to calculate the plasma nonadiabatic response in low-frequency MHD applications,this finding may have a significant impact on the understanding of the kinetic driving and dissipative mechanisms of MHD instabilities and the plasma response to electromagnetic perturbations in fusion plasmas. 展开更多
关键词 perturbed Lagrangian drift kinetic low-frequency nonideal MHD fusion plasma
下载PDF
Understanding Lithium-ion Transport in Sulfolane- and Tetraglyme-Based Electrolytes Using Very Low-Frequency Impedance Spectroscopy
14
作者 Janet SHo Oleg A.Borodin +4 位作者 Michael SDing Lin Ma Marshall A.Schroeder Glenn R.Pastel Kang Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期368-376,共9页
With the increasing interest in highly concentrated electrolyte systems,correct determination of the cation transference number is important.Pulsed-field gradient NMR technique,which measures self-diffusion coefficien... With the increasing interest in highly concentrated electrolyte systems,correct determination of the cation transference number is important.Pulsed-field gradient NMR technique,which measures self-diffusion coefficients,is often applied on liquid electrolytes because of the wide accessibility and simple sample preparation.However,since the assumptions of this technique,that is,complete salt dissociation,all ions participating in motion,and all of them moving independently,no longer hold true in concentrated solutions,the transference numbers,thus obtained are often over-estimated.In the present work,impedance spectroscopy at a frequency range of 1 MHz to 0.1 mHz was used to examine the concentration effect on lithium-ion transference number under anion-blocking conditions T abc Liþfor two electrolytes:lithium bis(fluorosulfonyl)imide(LiFSI)in sulfolane(SL)and lithium bis(trifluorosulfonyl)imide(LiTFSI)in tetraglyme(G4).The T abc Liþof the former was almost an order of magnitude higher than that of the latter.It also appeared to increase with increasing concentration while the latter followed an opposite trend.The faster Li^(+)transport in the SL system is attributed to the formation of a liquid structure consisting of extended chains/bridges of SL molecules and the anions,which facilitate a cation-hopping/ligand-exchanged-typed diffusion mechanism by partially decoupling the cations from the anions and solvent molecules.The G4 system,in contrast,is dominated by the formation of long-lived,stable[Li(G4)]+solvation cages that results in a sluggish Li+transport.The difference between the two transport mechanisms is discussed via comparison of the bulk ionic conductivity,viscosity,ion self-diffusion coefficients,and the Onsager transport coefficients. 展开更多
关键词 anion-blocking conditions ion correlations low-frequency impedance spectroscopy transference number
下载PDF
Low-Frequency Oscillation Analysis of Grid-Connected VSG System Considering Multi-Parameter Coupling
15
作者 Shengyang Lu Tong Wang +6 位作者 Yuanqing Liang Shanshan Cheng Yupeng Cai Haixin Wang Junyou Yang Yuqiu Sui Luyu Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2373-2386,共14页
With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The p... With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The phenomenon of low-frequency oscillation caused by lack of damping and moment of inertia is worth studying.In recent years,virtual synchronous generator(VSG)technique has been developed rapidly because it can provide considerable damping and moment of inertia.While improving the stability of the system,it also inevitably causes the problem of active power oscillation,especially the low mutual damping between the VSG and the power grid will make the oscillation more severe.The traditional time-domain state-space method cannot reflect the interaction among state variables and study the interaction between different nodes and branches of the power grid.In this paper,a frequency-domain method for analyzing low-frequency oscillations considering VSG parameter coupling is proposed.First,based on the rotor motion equation of the synchronous generator(SG),a secondorder VSG model and linearized power-frequency control loop model are established.Then,the differences and connections between the coupling of key VSG parameters and low-frequency oscillation characteristics are studied through frequency domain analysis.The path and influencemechanism of a VSG during low-frequency power grid oscillations are illustrated.Finally,the correctness of the theoretical analysis model is verified by simulation. 展开更多
关键词 Inverter power supply low-frequency oscillation virtual synchronous generator rotor motor equation
下载PDF
Development of a low-frequency magnetic lightning mapping system(LFM-LMS)in North China:validation and preliminary results
16
作者 Xiao Li GaoPeng Lu +3 位作者 FanChao Lyu HongBo Zhang Kainat Qamar RuBin Jiang 《Earth and Planetary Physics》 CAS CSCD 2023年第4期460-470,共11页
A low-frequency magnetic lightning mapping system(LFM-LMS)was built during the SHAndong Triggered Lightning Experiment(SHATLE),based on continuous measurements of magnetic field radiation from lightning.The hardware a... A low-frequency magnetic lightning mapping system(LFM-LMS)was built during the SHAndong Triggered Lightning Experiment(SHATLE),based on continuous measurements of magnetic field radiation from lightning.The hardware and source-mapping techniques used by the LFM-LMS were introduced;both Monte Carlo simulations and the observation of rocket-triggered lightning examples were employed to examine the location accuracy and detection effectiveness of the LFM-LMS.We estimated that the system’s location accuracy about 100−200 m horizontally and~200 m vertically.A natural intra-cloud lightning flash and a rocket-triggered lightning flash,both with intricate structures and discharging processes,were examined using the three-dimensional mapping results.The progressing path of negative lightning leaders is usually well-defined,and its propagation speed is estimated to be(0.5−1.4)×10^(6)m/s.In summary,the LFM-LMS can reconstruct the three-dimensional morphology of lightning flashes;this technology provides a efficient method for investigating the characteristics of lightning development,as well as the overall electrical strucuture of thunderstorms. 展开更多
关键词 rocket-triggered lightning low-frequency magnetic field lightning mapping observation location accuracy
下载PDF
Method for measuring the low-frequency sound power from a complex sound source based on sound-field correction in a non-anechoic tank
17
作者 徐宏哲 李琪 +1 位作者 唐锐 尚大晶 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期504-519,共16页
Similar to air reverberation chambers, non-anechoic water tanks are important acoustic measurement devices that can be used to measure the sound power radiated from complex underwater sound sources using diffusion fie... Similar to air reverberation chambers, non-anechoic water tanks are important acoustic measurement devices that can be used to measure the sound power radiated from complex underwater sound sources using diffusion field theory. However,the problem of the poor applicability of low-frequency measurements in these tanks has not yet been solved. Therefore,we propose a low-frequency acoustic measurement method based on sound-field correction(SFC) in an enclosed space that effectively solves the problem of measuring the sound power from complex sound sources below the Schroeder cutoff frequency in a non-anechoic tank. Using normal mode theory, the transfer relationship between the mean-square sound pressure in an underwater enclosed space and the free-field sound power of the sound source is established, and this is regarded as a correction term for the sound field between this enclosed space and the free field. This correction term can be obtained based on previous measurements of a known sound source. This term can then be used to correct the mean-square sound pressure excited by any sound source to be tested in this enclosed space and equivalently obtain its free-field sound power. Experiments were carried out in a non-anechoic water tank(9.0 m × 3.1 m × 1.7 m) to confirm the validity of the SFC method. Through measurements with a spherical sound source(whose free-field radiation characteristics are known),the correction term of the sound field between this water tank and the free field was obtained. On this basis, the sound power radiated from a cylindrical shell model under the action of mechanical excitation was measured. The measurement results were found to have a maximum deviation of 2.9 d B from the free-field results. These results show that the SFC method has good applicability in the frequency band above the first-order resonant frequency in a non-anechoic tank. This greatly expands the potential low-frequency applications of non-anechoic tanks. 展开更多
关键词 non-anechoic tank complex sound source sound-field correction low-frequency sound power
下载PDF
Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration
18
作者 Yong Zhao Xiqi Li +2 位作者 Lin Lei Ling Chen Zhiping Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2597-2610,共14页
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani... Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process. 展开更多
关键词 low-frequency vibration Low-permeability sandstone Uranium migration Permeability evolution mechanism Chemical reactive rate Optimum permeability
下载PDF
Research on Electromagnetic Loss Characteristics of Submarine Cables
19
作者 Liuhuo Wang Qingcui Liu +3 位作者 Wenwei Zhu Yanru Wang Yi Tian Long Zhao 《Energy Engineering》 EI 2023年第11期2651-2666,共16页
The electromagnetic losses of submarine cables are mainly caused by the metal shielding layer to prevent the water tree effect and the armor layer that strengthens the strength of the submarine cables.While these loss... The electromagnetic losses of submarine cables are mainly caused by the metal shielding layer to prevent the water tree effect and the armor layer that strengthens the strength of the submarine cables.While these losses cause the temperature of submarine cable to rise,and temperature variation will in turn change the conductivity of its metal layer material.In this paper,the electric-magnetic-thermal multi-physical field coupling of the electromagnetic loss variation of the submarine cable is realized by establishing a full coupling system containing Fourier’s law and Maxwell-Ampère’s Law for the photoelectric composite submarine cable.The multi-physical field coupling model is solved and analyzed by using the finite elementmethod.Firstly,the loss of each layer of the optoelectronic composite submarine cable is analyzed,and the lossof eachlayer of the submarine cable and themainfactors leading to the loss of the submarine cable are given.Secondly,the influence of environmental temperature,ampacity and armor layer on the electromagnetic loss of submarine cables is studied,and the main operating factors affecting the electromagnetic loss of submarine cables are summarized.The research shows that the influence of ambient temperature can be ignored,and the loss of shielding layer and armor layer increases with the increase of ampacity,but the impact of shielding layer loss is greater.Finally,this paper studies the electromagnetic loss of each metal layer of the submarine cable and the influence of the laying spacing on the electromagnetic loss.The research results show that the two ways of improving the conductivity of the armor layer and reducing the relative permeability of the armor layer can effectively reduce the loss of each metal layer in the cable structure and increase the current carrying capacity when the tensile strength of the armor layer meets the requirements for single-core and threecore photoelectric composite submarine cables laid horizontally.At the same time,increasing the laying spacing will increase the loss,but it can improve the overall current carrying capacity of the cable.The research in this paper provides a theoretical basis for the design of submarine cable carrying capacity,and also provides a reference for the optimization design of submarine cable structures. 展开更多
关键词 Submarine cable multi-physical field coupling electromagnetic loss
下载PDF
Parameters Identification for Extended Debye Model of XLPE Cables Based on Sparsity-Promoting Dynamic Mode Decomposition Method
20
作者 Weijun Wang Min Chen +1 位作者 Hui Yin Yuan Li 《Energy Engineering》 EI 2023年第10期2433-2448,共16页
To identify the parameters of the extended Debye model of XLPE cables,and therefore evaluate the insulation performance of the samples,the sparsity-promoting dynamicmode decomposition(SPDMD)methodwas introduced,aswell... To identify the parameters of the extended Debye model of XLPE cables,and therefore evaluate the insulation performance of the samples,the sparsity-promoting dynamicmode decomposition(SPDMD)methodwas introduced,aswell the basics and processes of its applicationwere explained.The amplitude vector based on polarization current was first calculated.Based on the non-zero elements of the vector,the number of branches and parameters including the coefficients and time constants of each branch of the extended Debye model were derived.Further research on parameter identification of XLPE cables at different aging stages based on the SPDMD method was carried out to verify the practicability of the method.Compared with the traditional differential method,the simulation and experiment indicated that the SPDMD method can effectively avoid problems such as the relaxation peak being unobvious,and possessing more accuracy during the parameter identification.And due to the polarization current being less affected by the measurement noise than the depolarization current,the SPDMD identification results based on the polarization current spectral line proved to be better at reflecting the response characteristics of the dielectric.In addition,the time domain polarization current test results can be converted into the frequency domain,and then used to obtain the dielectric loss factor spectrum of the insulation.The integral of the dielectric loss factor on a frequency domain can effectively evaluate the insulation condition of the XLPE cable. 展开更多
关键词 cable insulation dielectric response sparsity-promoting dynamic mode decomposition parameter identification
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部