期刊文献+
共找到377,475篇文章
< 1 2 250 >
每页显示 20 50 100
Failure characterization of fully grouted rock bolts under triaxial testing 被引量:1
1
作者 Hadi Nourizadeh Ali Mirzaghorbanali +3 位作者 Mehdi Serati Elamin Mutaz Kevin McDougall Naj Aziz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期778-789,共12页
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st... Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism. 展开更多
关键词 Rock bolts Bolt-grout interface Bond strength Push test Triaxial tests
下载PDF
Unbound^(28)O,the heaviest oxygen isotope observed:a cutting-edge probe for testing nuclear models 被引量:1
2
作者 Jian-Guo Li Bai-Shan Hu +1 位作者 Shuang Zhang Fu-Rong Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期1-2,共2页
The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an ... The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N. 展开更多
关键词 testing QUANTUM system
下载PDF
Electrochemical biosensors for point-of-care testing 被引量:1
3
作者 Jinsol Kim Juho Jeong Seung Hwan Ko 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期548-565,共18页
Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT... Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings. 展开更多
关键词 Point-of-care testing(POCT) Electrochemical sensor ENZYME ANTIBODY Health care
下载PDF
Enhancing Low-Frequency Microwave Absorption Through Structural Polarization Modulation of MXenes
4
作者 Bo Shan Yang Wang +1 位作者 Xinyi Ji Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期435-452,共18页
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol... Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method. 展开更多
关键词 Hierarchical structure MXene Microwave absorption low-frequency
下载PDF
Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial
5
作者 Xingjian DONG Shuo WANG +5 位作者 Anshuai WANG Liang WANG Zhaozhan ZHANG Yuanhao TIE Qingyu LIN Yongtao SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1841-1856,共16页
The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of... The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of reducing low-frequency noise has been developed.By combining Bloch’s theorem with the finite element method,the band structure is calculated.Numerical results indicate that this metamaterial can produce multiple low-frequency bandgaps within 500 Hz,with a bandgap ratio exceeding 50%.The first bandgap spans from 169.57 Hz to 216.42 Hz.To reveal the formation mechanism of the bandgap,a vibrational mode analysis is performed.Numerical analysis demonstrates that the bandgap is attributed to the suppression of elastic wave propagation by the vibrations of the structure’s two protruding corners and overall expansion vibrations.Additionally,detailed parametric analyses are conducted to investigate the effect ofθ,i.e.,the angle between the protruding corner of the structure and the horizontal direction,on the band structures and the total effective bandgap width.It is found that reducingθis conducive to obtaining lower frequency bandgaps.The propagation characteristics of elastic waves in the structure are explored by the group velocity,phase velocity,and wave propagation direction.Finally,the transmission characteristics of a finite periodic structure are investigated experimentally.The results indicate significant acceleration amplitude attenuation within the bandgap range,confirming the structure’s excellent low-frequency vibration suppression capability. 展开更多
关键词 wave propagation vibration suppression METAMATERIAL low-frequency bandgap
下载PDF
Dynamic characteristics of coal specimens with varying static preloading levels under low-frequency disturbance load
6
作者 WEN Xiao-ze FENG Guo-rui +5 位作者 GUO Jun YU Lu-yang QIAN Rui-peng ZHANG Jie ZHANG Peng-fei FENG Wen-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2644-2657,共14页
The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency di... The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency disturbance dynamic uniaxial compression tests on coal specimens using a self-developed dynamic-static load coupling electro-hydraulic servo system,and studied the strength evolutions,surface deformations,acoustic emission(AE)characteristic parameters,and the failure modes of coal specimens with different static preloading levels were studied.The disturbance damage is positively correlated with the coal specimen static preload level.Specifically,the cumulative AE count rates of the initial accelerated damage stage for the coal specimens with static preloading level of 60%and 70%of the uniaxial compressive strength(UCS)were 2.66 and 3.19 times that of the 50%UCS specimens,respectively.Macroscopically,this behaviour manifested as a decrease in the compressive strength,and the mean strengths of the disturbance-damaged coal specimens with 60%and 70%of UCS static preloading decreased by 8.53%and 9.32%,respectively,compared to those of the specimens under pure static loading.The crack sources,such as the primary fissures,strongly control the dynamic response of the coal specimen.The difference between the dynamic responses of the coal specimens and that of dense rocks is significant. 展开更多
关键词 low-frequency disturbance dynamic response coal specimens static preloading level
下载PDF
A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures
7
作者 Yan-Xiao He Shang-Xu Wang +9 位作者 Gen-Yang Tang Chao Sun Hong-Bing Li San-Yi Yuan Xian Wei Li-Deng Gan Xiao-Feng Dai Qiang Ge Peng-Peng Wei Hui-Qing Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期162-181,共20页
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and... Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion. 展开更多
关键词 low-frequency measurements Dispersion and attenuation Rock physics Fluid flow
下载PDF
Low-frequency oscillation of train-network system considering traction power supply mode
8
作者 Yuchen Liu Xiaoqin Lyu +1 位作者 Mingyuan Chang Qiqi Yang 《Railway Engineering Science》 EI 2024年第2期244-256,共13页
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra... The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink. 展开更多
关键词 low-frequency oscillation Train-network system Modal analysis Bilateral power supply Participation factor
下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
9
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND Vibration attenuation low-frequency ultrasound vibration Transmission loss
下载PDF
C-CORE:Clustering by Code Representation to Prioritize Test Cases in Compiler Testing
10
作者 Wei Zhou Xincong Jiang Chuan Qin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2069-2093,共25页
Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount impo... Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%. 展开更多
关键词 Compiler testing test case prioritization code representation
下载PDF
Current optimization-based control of dual three-phase PMSM for low-frequency temperature swing reduction
11
作者 Linlin Lu Xueqing Wang +3 位作者 Luhan Jin Qiong Liu Yun Zhang Yao Mao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期238-246,共9页
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur... In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction. 展开更多
关键词 Dual three-phase PMSM low-frequency temperature swing Copper loss Current optimization Connected neutral points
下载PDF
High-order Bragg forward scattering and frequency shift of low-frequency underwater acoustic field by moving rough sea surface
12
作者 莫亚枭 张朝金 +2 位作者 鹿力成 孙启航 马力 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期459-470,共12页
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi... Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves. 展开更多
关键词 high-order Bragg scattering frequency shift low-frequency acoustic field moving rough sea surface
下载PDF
A low-frequency pure metal metamaterial absorber with continuously tunable stiffness
13
作者 Xingzhong WANG Shiteng RUI +2 位作者 Shaokun YANG Weiquan ZHANG Fuyin MA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1209-1224,共16页
To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing ac... To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions. 展开更多
关键词 elastic metamaterial absorber continuously tunable stiffness low-frequency vibration damping variable stiffness design pure metal structure
下载PDF
Field testing of shear strength of granite residual soils
14
作者 Song Yin Pengfei Liu +3 位作者 Xianwei Zhang Wenyuan He Pan Yan Yuzhou Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3718-3732,共15页
The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g... The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS. 展开更多
关键词 Granite residual soils Shear strength Field tests Self-boring pressuremeter Seismic dilatometer Borehole shear test
下载PDF
Efficient Penetration Testing Path Planning Based on Reinforcement Learning with Episodic Memory
15
作者 Ziqiao Zhou Tianyang Zhou +1 位作者 Jinghao Xu Junhu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2613-2634,共22页
Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attack... Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%. 展开更多
关键词 Intelligent penetration testing penetration testing path planning reinforcement learning episodic memory exploration strategy
下载PDF
Altered spontaneous brain activity patterns in hypertensive retinopathy using fractional amplitude of low-frequency fluctuations:a functional magnetic resonance imaging study
16
作者 Xue-Lin Wang Xu-Jun Zheng +8 位作者 Li-Juan Zhang Jin-Yu Hu Hong Wei Qian Ling Liang-Qi He Cheng Chen Yi-Xin Wang Xu Chen Yi Shao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第9期1665-1674,共10页
AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHO... AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR. 展开更多
关键词 hypertensive retinopathy fractional amplitude of low-frequency fluctuation brain region magnetic resonance imaging
下载PDF
Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
17
作者 吴明兴 谢楷 +3 位作者 刘艳 徐晗 张宝 田得阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期519-530,共12页
A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic... A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma. 展开更多
关键词 low-frequency alternating magnetic field phase shift shock-tube plasma diagnosis electron density collision frequency
下载PDF
SARS-CoV-2 Pooled Testing Methodology for PCR Testing Applied in Private Laboratory in Armenia
18
作者 Inessa Nazaryan Narek Pepanyan +3 位作者 Arshag Keshishyan Susanna Petrosyan Naira Margaryan Shahane Mnatsakanyan 《Advances in Infectious Diseases》 CAS 2024年第1期67-73,共7页
Since the beginning of COVID-19 pandemics many countries were facing challenges with testing capacity recourse limitations. Throughout the waves of the pandemic countries were trying to address the existing constrains... Since the beginning of COVID-19 pandemics many countries were facing challenges with testing capacity recourse limitations. Throughout the waves of the pandemic countries were trying to address the existing constrains exploring solutions to increase the testing capacity with more cost-effective approaches. Pooled methodology was one of the methods which many have validated and used. It is evident that in case of pooled sample testing the sensitivity becomes lower, however the variation highly depends on the pool size as well as the incidence rate at the certain point. Armenia as well as many other countries has adopted regulations for mandatory COVID-19 PCR testing for all the travelers. Current study aimed to explore the efficiency of COVID-19 pooled PCR testing for nasopharyngeal swabs of individuals with no symptoms in a time period with good epidemiological state of the infection. Nasopharingeal swab samples from individuals were collected. The manual extraction of RNAs of samples was performed after pooling up to 5 samples. The pools with Cycle Threshold (CT) of < 37 were considered positive and were retested individually. In total 28,015 samples were grouped in 667 pools of which 57 were positive. The total number of positive samples was 65. The median difference (CT-pool–CT samples) was 2.4 (ranging from–3.0 to 8.9). The correlation of CT of pools and positive samples was positive. The correlation coefficient r = 0.84, P < 0.000, 95% CI range 0.7423 to 0.9243). The total economic saving when using pools compared to the individual testing was 72%. The minor difference between CT values of pools and samples can be explained by the dilution effect in the pool. However, the positive correlation between the values as well as the amount of cost saving demonstrate that pooling on nasopharyngeal samples for COVID-19 PCR testing can be a good method for efficient screening with significant resource saving. One of the most important advantages of the proposed method is the fact that samples are pooled prior extraction, which avoids the possibilities with misinterpretation of IC due to low yield of RNA in the extraction process. 展开更多
关键词 COVID-19 SCREENING Grouped testing
下载PDF
Contribution of Stress Testing to the Management of Ischemic Heart Disease in Mali
19
作者 Youssouf Camara Hamidou Oumar Ba +7 位作者 Ibrahima Sangaré Boubacar Sonfo Coumba Adiaratou Thiam Mahamadou Sékou Diakité Koniba Diarra Karamba Touré Massama Konaté Ichaka Menta 《World Journal of Cardiovascular Diseases》 CAS 2024年第2期77-87,共11页
Introduction: Exercise stress testing (on a treadmill or ergometer bicycle) is an important test in cardiology for diagnosing myocardial ischemia. This test in Mali is still in its beginning compared to other countrie... Introduction: Exercise stress testing (on a treadmill or ergometer bicycle) is an important test in cardiology for diagnosing myocardial ischemia. This test in Mali is still in its beginning compared to other countries in the sub-region. The lack of data in Mali prompted this study, which aimed to evaluate the indications of this activity and its diagnostic contribution to cardiology in Mali. Materials and Methods: This was a retrospective, descriptive study. The study was conducted at the “TOUCAM” medical clinic in Kati based on the analysis of stress test reports between January 2016 and August 2022. Result: During the study period, we documented 73 patients who underwent exercise testing on a bicycle ergometer for suspected coronary heart disease. The mean age of our patients was 47.5 ± 13.8 years (14 and 79 years). Males accounted for the majority (78.1%). The sex ratio is 3.5. More than half of our patients were overweight or obese (77.1%). Hypertension and diabetes affected 52.1% and 25.8% of patients, respectively. 20.8% of patients had coronary artery disease. renin-angiotensin-aldosterone system blockers (56.8%) and beta-blockers (51.3%). The main indications were chest pain (63.0%) and ischemia detection (15.1%). A modified STEEP protocol was used. The majority of our patients (71.2%) achieved at least 85% of their maximum theoretical heart rate. The main reason for the termination of the study was fatigue (57.3%). The average duration was 11.3 ± 4.2 minutes. 24.7% thought the stress tests were positive and 17.8% thought they were controversial. Conclusion: This study demonstrates the importance of stress testing in the diagnosis and treatment of ischemic heart disease, especially in settings where we have very limited access to coronary angiography. 展开更多
关键词 Stress test Ischemic Heart Disease MALI
下载PDF
Assessing the Spatial Equality of COVID Testing Sites Maintaining Zero COVID Policy
20
作者 Muhammad Sajid Mehmood Gang Li +3 位作者 Shiyan Zhai Yaochen Qin Annan Jin Lan Li 《Journal of Geographic Information System》 2024年第3期183-200,共18页
Rapid and timely testing is essential to minimize the COVID-19 spread. Decision makers and policy planners need to determine the equal distribution and accessibility of testing sites. This study mainly examines the sp... Rapid and timely testing is essential to minimize the COVID-19 spread. Decision makers and policy planners need to determine the equal distribution and accessibility of testing sites. This study mainly examines the spatial equality of COVID-19 testing sites that maintain a zero COVID policy in Guangzhou City. The study has identified the spatial disparities of COVID testing sites, characteristics of testing locations, and accessibility. The study has obtained information on COVID testing sites in Guangzhou City and population data. Point pattern analyses, Euclidian distance and allocation, and network analyses are the main methods used to achieve the research objectives, and 1183 total COVID testing sites can be recognized in Guangzhou City. Results revealed that spatial disparities could be noticed over the study area. Testing locations of Guangzhou City are highly clustered. The most significant testing sites are located in Haizhu District, which has the third largest population. The highest population density can be identified in Yuexiu District. However, only 94 testing sites are located there. According to all the results, higher disparities can be identified, and a lack of testing sites is located in the north part of the study area. Some people in the northern part have to travel more than 10 km to reach a testing site. Finally, this paper suggests increasing the number of testing sites in the north and south parts of the study area and keeping the same distribution, considering the area, total population, and population density. This kind of research will be helpful to decision-makers in making proper decisions to maintain a zero COVID policy. 展开更多
关键词 COVID-19 testing Sites Spatial Disparities Spatial Equality Guangzhou City ACCESSIBILITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部