期刊文献+
共找到11,211篇文章
< 1 2 250 >
每页显示 20 50 100
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:3
1
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms 被引量:1
2
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
3
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Transcriptomic analysis of molecular mechanisms underlying the biodegradation of organophosphorus pesticide chlorpyrifos by Lactobacillus delbrueckii ssp.bulgaricus in skimmed milk
4
作者 Yue Yang Wenxia Zhou +3 位作者 Lingyu Yang Yilun Chen Dongxiao Sun-Waterhouse Dapeng Li 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期3018-3030,共13页
Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products... Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus. 展开更多
关键词 Lactobacillus delbrueckii ssp.bulgaricus biodegradation CHLORPYRIFOS TRANSCRIPTOMICS METABOLOME
下载PDF
Effects of biodegradation on diamondoid distribution in crude oils from the Bongor Basin,Chad
5
作者 Huanxin Song Menghan Chen +2 位作者 Lirong Dou Dingsheng Cheng Zhigang Wen 《Energy Geoscience》 EI 2024年第2期120-128,共9页
The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes... The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes(As)and diamantanes(Ds),are relatively resistant to biodegradation and obvious biodegradation was observed in oils with a Peters-Moldowan(PM)biodegradation rank of 6 or more.Overall,the sensibility of biodegradation on diamondoids is generally similar to hopanes and regular steranes.As biodegradation evolves,the changes in concentration and components of diamondoids show that the biodegradation process is selective and stepwise.The significant increase of MD/MA and DMD/DMA for oils with a PM ranking 6^(+) indicates that diamantanes are generally more resistant to biodegradation than adamantanes.The similar trends of DMA/MA,EA/MA,MD/D,DMD/MD and other relevant indexes,show that higher alkylation homologs are more resistant to biodegradation.The commonly used diamondoid ratios,such as MAI,EAI,MDI and DMID-1,are obviously affected by biodegradation at the stage of high-level biodegradation,which may indicate that these ratios should be used with caution in case of severely degraded oils. 展开更多
关键词 DIAMONDOIDS biodegradation Sensitivity Crude oil Bongor Basin CHAD
下载PDF
Advances in sodium-ion batteries at low-temperature: Challenges and strategies
6
作者 Haoran Bai Xiaohui Zhu +3 位作者 Huaisheng Ao Guangyu He Hai Xiao Yinjuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期518-539,I0012,共23页
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h... With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs. 展开更多
关键词 low-temperature Sodium-ion batteries Reaction kinetics Cycle stability Safety concerns of Sodium-ion batteries
下载PDF
Temperature inversion enables superior stability for low-temperature Zn-ion batteries
7
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous Zn-ion batteries low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
下载PDF
Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries
8
作者 Yongchao Kang Feng Zhang +6 位作者 Houzhen Li Wangran Wei Huitong Dong Hao Chen Yuanhua Sang Hong Liu Shuhua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期104-113,共10页
Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf... Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries. 展开更多
关键词 aqueous zinc-ion batteries high performance inner solvation structure low polarity co-solvent low-temperature electrolyte
下载PDF
Impact of Low-temperature Storage on Volatile Flavor Compounds in Prepared Pork Products
9
作者 Xiulian WANG Jiamin ZHANG +3 位作者 Ting BAI Wei WANG Kaihong YANG Lili JI 《Agricultural Biotechnology》 2024年第4期70-75,81,共7页
[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18... [Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products. 展开更多
关键词 low-temperature storage Prepared pork Volatile flavor component Principal component analysis Cluster analysis
下载PDF
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2)
10
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
下载PDF
Ca and Sr co-doping induced oxygen vacancies in 3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts for boosting low-temperature oxidative coupling of methane
11
作者 Tongtong Wu Yuechang Wei +5 位作者 Jing Xiong Yitao Yang Zhenpeng Wang Dawei Han Zhen Zhao Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期331-344,共14页
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(... It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application. 展开更多
关键词 3DOM catalysts Ca ions Sr ions low-temperature oxidative couplingof methane Oxygen vacancies O_(2)^(-) species
下载PDF
Preparation of α-Bi_2O_3 from bismuth powders through low-temperature oxidation 被引量:4
12
作者 夏纪勇 唐谟堂 +2 位作者 陈萃 金胜明 陈永明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2289-2294,共6页
α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 ... α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation. 展开更多
关键词 bismuth powder low-temperature oxidation α-Bi2O3 oxidation kinetics
下载PDF
Processing of Aniline Aerofloat Wastewater with SBR System and Its Biodegradation Mechanism 被引量:4
13
作者 宋卫锋 陈小清 +2 位作者 严明 唐铁柱 李神勇 《Agricultural Science & Technology》 CAS 2013年第7期1032-1036,共5页
ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out w... ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out with SBR (Sequencing Batch Reactor) system; intermediate products in the process were analyzed using high-performance liquid chromatography. ResultAccording to the experimental results, the small-scale process was basically stably operated after 40 days of activation and regulation, leading to relatively ideal degradation effect on aniline aerofloat, the COD removal efficiency reached 64.3% , degradation rate of aniline aerofloat reached 93.4%, which could be applied in the treatment of mine flotation wastewater containing such pollutant. During the degradation process, pH increased from 5.83 to 6.60 and then dropped to 6.17, which might be caused by the thiocyanate ions and aniline generated in the degradation process. Aniline aerofloat mainly produced two preliminary products during the biodegradation process: aniline and a substance that was difficult to be biodegraded under aerobic conditions, which was the main reason for the relatively high COD value in effluent. Furthermore, aniline was eventually biodegraded. ConclusionThis study provided basis for the development of biological treatment of flotation wastewater in China and showed great significance for the improvement of ecological environment around the mines. 展开更多
关键词 Aniline aerofloat SBR High-performance liquid chromatography (HPLC) biodegradation mechanism
下载PDF
Asymbiotic Germination and Low-temperature in Vitro Conservation of Cymbidium Dayanum 被引量:2
14
作者 罗远华 冷青云 +1 位作者 莫饶 陈业渊 《Agricultural Science & Technology》 CAS 2008年第1期67-69,74,共4页
[Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid ... [Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid propagation and long-term conservation in vitro. [Method] With mature seeds of C. dayanum as explants, different media were selected to establish asymbiotic germination technique system. With protocorms as materials, conservation, resumptive proliferation and plant regeneration conditions were selected to establish low-temperature in vitro conservation technique system preliminarily. [Result] Mature seeds of C. dayanum could germinate after cultured 90 days on MS media as well as "Hyponex 1" media. The germination rate reached more than 98%. Protocorms inoculated in "Hyponex 1" media could be conserved continuously at 5 ℃ in dark for more than 18 months and the survival rate could reach 90%. Conserved protocorms could realize resumptive preliferation culture both on 1/2 MS and "Hyponex 1" media. The seed- ling-strengthening and rooting media were 1/2 MS media. [Conclusion] This research provided practical basis for in vitro conservation and rapid propagation of C. dayanum germplasm resource. 展开更多
关键词 Cymbidium dayanum Asymbiotic germination PROTOCORM low-temperature in vitro conservation
下载PDF
Effects of Exogenous Glycine Betaine on Oxidation Metabolism in Cucumbers during Low-temperature Storage
15
作者 许丽 陈湘宁 +2 位作者 张海英 韩涛 王富贵 《Agricultural Science & Technology》 CAS 2015年第5期857-861,867,共6页
[Objective] This study aimed to analyze the effects of different concentrations of glycine betaine(GB) on oxidation metabolism in cucumbers under low-temperature stress and to investigate the possible mechanism of l... [Objective] This study aimed to analyze the effects of different concentrations of glycine betaine(GB) on oxidation metabolism in cucumbers under low-temperature stress and to investigate the possible mechanism of low-temperature resistance in cucumber during low-temperature storage. [Method] Cucumber cultivar Zhongnong No.8 was treated with 0, 5, 10 and 15 mmol/L GB solutions for 15 min and stored at 4 ℃. Changes in oxidative metabolism-related parameters were observed. [Result] Increasing exogenous GB concentration could enhance GB content in cucumbers, decline lipoxygenase(LOX) activity, improve peroxidase(POD) and catalase(CAT) activities, remove effectively hydrogen peroxide(H2O2) and reduce the accumulation of malondialdehyde(MDA). [Conclusion] Treating cucumbers with10 mmol/L GB exhibited the most remarkable effect. 展开更多
关键词 CUCUMBER Glycine betaine (GB) low-temperature resistance Oxidation metabolism
下载PDF
Isolation, Identification and Biodegradation Characteristics of a Phthalate Ester Degrading Bacterium
16
作者 张敏 吴祥为 张付海 《Agricultural Science & Technology》 CAS 2015年第7期1363-1366,共4页
By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Bur... By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Burkholderia pickettil and named B. pickettii.z-1. The biodegradation of five phthalate esters by B. pick- ettii.z-1 strain was in accordance with the pseudo first-order kinetic equation: Ct = C0.e-kt. As the concentration of phthalate esters increased, the degradation rate of phthalate esters was reduced. B. pickettii.z-1 strain exhibited remarkably different degradation effects on various PAEs. Specifically, short-side-chain DMP and DEP were degraded rapidly, while long-side-chain DBP and DEHP were degraded slowly. 展开更多
关键词 Phthalate esters MICROORGANISMS biodegradation kinetics
下载PDF
Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29 被引量:16
17
作者 WU Lan GE Gang WAN Jinbao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第2期237-242,共6页
The ability of Yarrowia lipolytica W29 immobilized by calcium alginate to degrade oil and chemical oxygen demand (COD) was examined. The degradation rules of oil and COD by immobilized cells with the cell density of... The ability of Yarrowia lipolytica W29 immobilized by calcium alginate to degrade oil and chemical oxygen demand (COD) was examined. The degradation rules of oil and COD by immobilized cells with the cell density of 6.65 × 10^6 CFU/mL degraded 2000 mg/L oil and 2000 mg/L COD within 50 h at 30℃ (pH 7.0, 150 r/min), similarly to those of free cells, and the degradation efficiencies of oil and COD by immobilized cells were above 80%, respectively. The factors affecting oil and COD degradation by immobilized cells were investigated, the results showed that immobilized cells had high thermostability compared to that of free cells, and substrate concentration significantly affected degrading ability of immobilized cells. Storage stability and reusability tests revealed that the oil degradation ability of immobilized cells was stable after storing at 4~C for 30 d and reuse for 12 times, respectively, the COD degradation rate of immobilized cells was also maintained 82% at the sixth cycle. These results suggested that immobilized Y lipolytica might be applicable to a wastewater treatment system for the removal of oil and COD. 展开更多
关键词 Yarrowia lipolytica biodegradation oil wastewater calcium alginate
下载PDF
Biodegradation of phenol by free and immobilized Acinetobacter sp.strain PD12 被引量:24
18
作者 WANG Ying TIAN Ye +3 位作者 HAN Bin ZHAO Hua-bing BI Jian-nan CAI Bao-li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第2期222-225,共4页
A new phenol-degrading bacterium with high biodegradation activity and high tolerance of phenol, strain PD 12, was isolated from the activated sludge of Tianjin Jizhuangzi Wastewater Treatment Facility in China. This ... A new phenol-degrading bacterium with high biodegradation activity and high tolerance of phenol, strain PD 12, was isolated from the activated sludge of Tianjin Jizhuangzi Wastewater Treatment Facility in China. This strain was capable of removing 500 mg phenol/L in liquid minimal medium by 99.6% within 9 h and metabolizing phenol at concentrations up to 1100 mg/L. DNA sequencing and homologous analysis of 16S rRNA gene identified PD12 to be an Acinetobacter sp. Polyvinyl alcohol (PVA) was used as a gel matrix to immobilize Acinetobacter sp. strain PDI2 by repeated freezing and thawing. The factors affecting phenol degradation of immobilized cells were investigated, and the results showed that the immobilized cells could tolerate a high phenol level and protected the bacteria against changes in temperature and pH. Storage stability and reusability tests revealed that the phenol degradation functions of immobilized cells were stable after reuse for 50 times or storing at 4℃ for 50 d. These results indicate that immobilized Acinetobacter sp. strain PD 12 possesses a good application potential in the treatment of phenol-containing wastewater. 展开更多
关键词 PHENOL biodegradation Acinetobacter sp. PD 12 immobilized bacterium
下载PDF
Nitrobenzene biodegradation ability of microbial communities in water and sediments along the Songhua River after a nitrobenzene pollution event 被引量:14
19
作者 LI Zonglai YANG Min LI Dong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第7期778-786,共9页
More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Ji... More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Jilin City on November 13,2005.As one of the efforts to predict the fate of residual NB in the river,NB biodegradation abilities by microbes in the water and sediments from different river sections were evaluated systematically.The results indicated that microbial communities from any section of ... 展开更多
关键词 NITROBENZENE the Songhua River pollution accident biodegradation low temperature
下载PDF
Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04 被引量:18
20
作者 LIU Fang-yao HONG Ming-zhang LIU Dan-mei LI Ya-wen SHOU Pei-shun YAN Hai SHI Guo-qing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第10期1257-1260,共4页
Biodegradation of methyl parathion (MP), a widely used organophosphorus pesticide, was investigated using a newly isolated bacterium strain Acinetobacter radioresistens USTB-04. MP at an initial concentration of 120... Biodegradation of methyl parathion (MP), a widely used organophosphorus pesticide, was investigated using a newly isolated bacterium strain Acinetobacter radioresistens USTB-04. MP at an initial concentration of 1200 mg/L could be totally biodegraded by A. radioresistens USTB-04 as the sole carbon source less than 4 d in the presence of phosphate and urea as phosphorus and nitrogen sources, respectively. Biodegradation of MP was also achieved using cell-free extract of A. radioresistens USTB-04. MP at an initial concentration of 130 mg/L was completely biodegraded in 2 h in the presence of cell-free extract with a protein concentration of 148.0 mg/L, which was increased with the increase of pH from 5.0 to 8.0. Contrary to published reports, no intermediate or final degradation metabolites of MP could be observed. Thus we suggest that the cleavage of C-C bond on the benzene ring other than P-O bond may be the biodegradation pathway of MP by A. radioresistens USTB-04. 展开更多
关键词 Acinetobacter radioresistens USTB-04 biodegradation methyl parathion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部