期刊文献+
共找到178,852篇文章
< 1 2 250 >
每页显示 20 50 100
Low-Temperature Response to Major Agronomic Traits by Using Recombinant Inbred Line(RIL) Populations Derived from Towada × Kunmingxiaobaigu 被引量:1
1
作者 XU Fu-rong YU Teng-qiong TANG Cui-feng A Xin-xiang FAN Chuan-zhang HU Yi-liang ZHANG Dun-yu DONG Chao DAI Lu-yuan 《Agricultural Sciences in China》 CAS CSCD 2009年第11期1301-1311,共11页
Development of the recombinant inbred line populations (RILs) is important basis to detect QTLs for cold tolerance at booting stage in rice. A set of 230 RILs derived from the cross of Towada and Kunmingxiaobaigu we... Development of the recombinant inbred line populations (RILs) is important basis to detect QTLs for cold tolerance at booting stage in rice. A set of 230 RILs derived from the cross of Towada and Kunmingxiaobaigu were used for evaluation of low-temperature response on major agronomic traits of plant height (PH), panicle length (PL), panicle exsertion (PE), spikelet fertility (SF), specific spikelet fertility (SSF), and spikelets per panicle (SPP) under natural low-temperature growing environments in Yunnan Province, China. The results showed PH, PE, and SPP were mainly attributed by genotypes. PL was mainly influenced interactively by the genotypes × environments. SF and SSF were mainly controlled by the environments. Under the five different growth environments, F values of the six agronomic traits mentioned above ranged from 4.019 to 97.284. Significant difference was revealed between the lines. Under every environment, it indicated significantly positive correlation between SF and SSF, with correlation coefficients ranged from 0.826 to 0.885. It indicated significantly positive correlation between PH, PL, and PE. Under five different growing environments, variation coefficients of the six characters ordered in SSF (66.3%) 〉 PE (57.4%) 〉 SP (37.2%) 〉 SPP (16.2%) 〉 PH (9.6%) 〉 PL (6.4%). SSF, PE and SF were most sensitive to low temperature stress at booting stage, while SPP, PH and PL being least. The RILs of Towada/ Kunmingxiaobaigu can be used as a genetic population to investigate cold tolerance at booting stage. SSF, PE and SF are most sensitive to cold tolerance at booting stage in rice. So far the the variation of PH, PL, and SPP related to cold tolerance are not clear under natural low-temperature environment. More tested environments and years are required to identify and evaluate cold tolerance at booting stage in rice. 展开更多
关键词 ANOVA correlation analysis low-temperature response major agronomic traits recombination inbred line population (RIL) Oryza sativa L. sp. japonica
下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:2
2
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms 被引量:1
3
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
4
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
A theory for three-dimensional response of micropolar plates 被引量:1
5
作者 Dianwu HUANG Linghui HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1403-1414,共12页
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu... Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail. 展开更多
关键词 micropolar plate TRANSFER-MATRIX asymptotic expansion three-dimensional response
下载PDF
Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma 被引量:1
6
作者 Zhong-Xing Shi Chang-Fu Li +6 位作者 Li-Feng Zhao Zhong-Qi Sun Li-Ming Cui Yan-Jie Xin Dong-Qing Wang Tan-Rong Kang Hui-Jie Jiang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第4期361-369,共9页
Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treat... Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treatment response can help patients choose a reasonable treatment plan.This study aimed to investigate the value of the radiomic-clinical model in predicting the efficacy of the first TACE treatment for HCC to prolong patient survival.Methods:A total of 164 patients with HCC who underwent the first TACE from January 2017 to September 2021 were analyzed.The tumor response was assessed by modified response evaluation criteria in solid tumors(mRECIST),and the response of the first TACE to each session and its correlation with overall survival were evaluated.The radiomic signatures associated with the treatment response were identified by the least absolute shrinkage and selection operator(LASSO),and four machine learning models were built with different types of regions of interest(ROIs)(tumor and corresponding tissues)and the model with the best performance was selected.The predictive performance was assessed with receiver operating characteristic(ROC)curves and calibration curves.Results:Of all the models,the random forest(RF)model with peritumor(+10 mm)radiomic signatures had the best performance[area under ROC curve(AUC)=0.964 in the training cohort,AUC=0.949 in the validation cohort].The RF model was used to calculate the radiomic score(Rad-score),and the optimal cutoff value(0.34)was calculated according to the Youden’s index.Patients were then divided into a high-risk group(Rad-score>0.34)and a low-risk group(Rad-score≤0.34),and a nomogram model was successfully established to predict treatment response.The predicted treatment response also allowed for significant discrimination of Kaplan-Meier curves.Multivariate Cox regression identified six independent prognostic factors for overall survival,including male[hazard ratio(HR)=0.500,95%confidence interval(CI):0.260–0.962,P=0.038],alpha-fetoprotein(HR=1.003,95%CI:1.002–1.004,P<0.001),alanine aminotransferase(HR=1.003,95%CI:1.001–1.005,P=0.025),performance status(HR=2.400,95%CI:1.200–4.800,P=0.013),the number of TACE sessions(HR=0.870,95%CI:0.780–0.970,P=0.012)and Rad-score(HR=3.480,95%CI:1.416–8.552,P=0.007).Conclusions:The radiomic signatures and clinical factors can be well-used to predict the response of HCC patients to the first TACE and may help identify the patients most likely to benefit from TACE. 展开更多
关键词 Hepatocellular carcinoma Transarterial chemoembolization Radiomics Treatment response Prediction
下载PDF
Probiotics: Shaping the gut immunological responses 被引量:1
7
作者 Eirini Filidou Leonidas Kandilogiannakis +2 位作者 Anne Shrewsbury George Kolios Katerina Kotzampassi 《World Journal of Gastroenterology》 SCIE CAS 2024年第15期2096-2108,共13页
Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate amounts.Among the most popular and adequately studied probiotics are bacteria from the families Lactob... Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate amounts.Among the most popular and adequately studied probiotics are bacteria from the families Lactobacillaceae,Bifidobacteriaceae and yeasts.Most of them have been shown,both in vitro and in vivo studies of intestinal inflammation models,to provide favorable results by means of improving the gut microbiota composition,promoting the wound healing process and shaping the immunological responses.Chronic intestinal conditions,such as inflammatory bowel diseases(IBD),are characterized by an imbalance in microbiota composition,with decreased diversity,and by relapsing and persisting inflammation,which may lead to mucosal damage.Although the results of the clinical studies investigating the effect of probiotics on patients with IBD are still controversial,it is without doubt that these microorganisms and their metabolites,now named postbiotics,have a positive influence on both the host’s microbiota and the immune system,and ultimately alter the topical tissue microenvironment.This influence is achieved through three axes:(1)By dis-placement of potential pathogens via competitive exclusion;(2)by offering protection to the host through the secretion of various defensive mediators;and(3)by supplying the host with essential nutrients.We will analyze and discuss almost all the in vitro and in vivo studies of the past 2 years dealing with the possible favorable effects of certain probiotic genus on gut immunological responses,highlighting which species are the most beneficial against intestinal inflammation. 展开更多
关键词 PROBIOTICS Lactobacillaceae Bifidobacteriaceae SACCHAROMYCES Intestinal inflammation Immune responses
下载PDF
Inflammation: Complexity and significance of cellular and molecular responses 被引量:1
8
作者 Serdar Ozdemir 《Journal of Acute Disease》 2024年第1期3-7,共5页
Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical sig... Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical signs like redness,swelling,pain,and increased body temperature.Immune cells,notably neutrophils and macrophages,play key roles in orchestrating this response.The delicate balance between proinflammatory and anti-inflammatory mediators,including cytokines and chemokines,regulates the inflammatory cascade.While acute inflammation is crucial for tissue repair,chronic inflammation may indicate an imbalance,contributing to conditions like autoimmune diseases.Understanding these mechanisms is vital for developing therapeutic strategies and managing chronic diseases. 展开更多
关键词 INFLAMMATION C-reactive protein PLATELETS SCUBE1 ADRENOMEDULLIN CALPROTECTIN Pentraxin-3 Immune response Acute phase response Vascular function
下载PDF
Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves 被引量:3
9
作者 Xiao Ye Hong-Hu Zhu +4 位作者 Gang Cheng Hua-Fu Pei Bin Shi Luca Schenato Alessandro Pasuto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1018-1032,共15页
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th... Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system. 展开更多
关键词 Reservoir landslide Thermo-hydro-poro-mechanical response Ultra-weak fiber bragg grating(UWFBG) subsurface evolution Engineering geological interface Geotechnical monitoring
下载PDF
Effects of Rosa roxburghii&edible fungus fermentation broth on immune response and gut microbiota in immunosuppressed mice 被引量:1
10
作者 Dechang Xu Jielun Hu +4 位作者 Yadong Zhong Yanli Zhang Wenting Liu Shaoping Nie Mingyong Xie 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期154-165,共12页
With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune func... With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune function and gut health in Cyclophosphamide induced immunosuppressed mice were investigated.Results showed that REFB could improve the immune organ index,and promote the proliferation and differentiation of splenic T lymphocytes.In addition,it attenuated intestinal mucosal damage and improved intestinal cellular immunity.REFB administration also up-regulated the expression of IL-4,INF-γ,TNF-α,T-bet and GATA-3 mRNA in small intestine.Furthermore,administration of REFB modulated gut microbiota composition and increased the relative abundance of beneficial genus,such as Bacteroides.It also increased the production of fecal short-chain fatty acids.These indicate that REFB has the potential to improve immunity,alleviate intestinal injury and regulate gut microbiota in immunosuppressed mice. 展开更多
关键词 Fermented foods Immunosuppressed mice Immune response Gut microbiota Short-chain fatty acids
下载PDF
Time-domain dynamic constitutive model suitable for mucky soil site seismic response 被引量:1
11
作者 Dong Qing Chen Su +2 位作者 Jin Liguo Zhou Zhenghua Li Xiaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期1-13,共13页
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu... Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident. 展开更多
关键词 seismic response time-domain dynamic constitutive model logarithmic dynamic skeleton dampening effect mucky soil
下载PDF
Computed tomography-based nomogram of Siewert type Ⅱ/Ⅲ adenocarcinoma of esophagogastric junction to predict response to docetaxel, oxaliplatin and S-1 被引量:1
12
作者 Chuan-Qinyuan Zhou Dan Gao +7 位作者 Yan Gui Ning-Pu Li Wen-Wen Guo Hai-Ying Zhou Rui Li Jing Chen Xiao-Ming Zhang Tian-Wu Chen 《World Journal of Radiology》 2024年第1期9-19,共11页
BACKGROUND Neoadjuvant chemotherapy(NAC)has become the standard care for advanced adenocarcinoma of esophagogastric junction(AEG),although a part of the patients cannot benefit from NAC.There are no models based on ba... BACKGROUND Neoadjuvant chemotherapy(NAC)has become the standard care for advanced adenocarcinoma of esophagogastric junction(AEG),although a part of the patients cannot benefit from NAC.There are no models based on baseline computed tomography(CT)to predict response of Siewert type II or III AEG to NAC with docetaxel,oxaliplatin and S-1(DOS).AIM To develop a CT-based nomogram to predict response of Siewert type II/III AEG to NAC with DOS.METHODS One hundred and twenty-eight consecutive patients with confirmed Siewert type II/III AEG underwent CT before and after three cycles of NAC with DOS,and were randomly and consecutively assigned to the training cohort(TC)(n=94)and the validation cohort(VC)(n=34).Therapeutic effect was assessed by disease-control rate and progressive disease according to the Response Evaluation Criteria in Solid Tumors(version 1.1)criteria.Possible prognostic factors associated with responses after DOS treatment including Siewert classification,gross tumor volume(GTV),and cT and cN stages were evaluated using pretherapeutic CT data in addition to sex and age.Univariate and multivariate analyses of CT and clinical features in the TC were performed to determine independent factors associated with response to DOS.A nomogram was established based on independent factors to predict the response.The predictive performance of the nomogram was evaluated by Concordance index(C-index),calibration and receiver operating characteristics curve in the TC and VC.RESULTS Univariate analysis showed that Siewert type(52/55 vs 29/39,P=0.005),pretherapeutic cT stage(57/62 vs 24/32,P=0.028),GTV(47.3±27.4 vs 73.2±54.3,P=0.040)were significantly associated with response to DOS in the TC.Multivariate analysis of the TC also showed that the pretherapeutic cT stage,GTV and Siewert type were independent predictive factors related to response to DOS(odds ratio=4.631,1.027 and 7.639,respectively;all P<0.05).The nomogram developed with these independent factors showed an excellent performance to predict response to DOS in the TC and VC(C-index:0.838 and 0.824),with area under the receiver operating characteristic curve of 0.838 and 0.824,respectively.The calibration curves showed that the practical and predicted response to DOS effectively coincided.CONCLUSION A novel nomogram developed with pretherapeutic cT stage,GTV and Siewert type predicted the response of Siewert type II/III AEG to NAC with DOS. 展开更多
关键词 Esophagogastric junction ADENOCARCINOMA Neoadjuvant chemotherapy response Tomography X-ray computed Predictor
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
13
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
Advances in sodium-ion batteries at low-temperature: Challenges and strategies
14
作者 Haoran Bai Xiaohui Zhu +3 位作者 Huaisheng Ao Guangyu He Hai Xiao Yinjuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期518-539,I0012,共23页
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h... With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs. 展开更多
关键词 low-temperature Sodium-ion batteries Reaction kinetics Cycle stability Safety concerns of Sodium-ion batteries
下载PDF
Temperature inversion enables superior stability for low-temperature Zn-ion batteries
15
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous Zn-ion batteries low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
下载PDF
LncRNA pol-lnc78 as a ceRNA regulates antibacterial responses via suppression of pol-miR-n199-3p-mediated SARM down-regulation in Paralichthys olivaceus
16
作者 Xian-Hui Ning Bing Han +1 位作者 Ye Peng Shao-Wu Yin 《Zoological Research》 SCIE CSCD 2024年第1期25-35,共11页
Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance i... Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates. 展开更多
关键词 LncRNA SARM miRNA ceRNA Antibacterial response
下载PDF
Dynamic response of a thermal transistor to time-varying signals
17
作者 阮琴丽 刘文君 王雷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期13-19,共7页
Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through... Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt. 展开更多
关键词 PHONON phononics thermal transistor dynamic response heat conduction
下载PDF
A peak enhancement of frequency response of waveguide integrated silicon-based germanium avalanche photodetector
18
作者 Linkai Yi Daoqun Liu +8 位作者 Wenzheng Cheng Daimo Li Guoqi Zhou Peng Zhang Bo Tang Bin Li Wenwu Wang Yan Yang Zhihua Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期61-68,共8页
Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and... Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and multiplication(SACM)APDs are popular due to their straightforward fabrication process, low optical propagation loss, and high detection sensitivity in optical communications. This paper introduces a lateral SACM Ge-on-Si APD on a silicon-on-insulator(SOI) wafer, featuring a 10 μm-long, 0.5 μm-wide Ge layer at 1310 nm on a standard 8-inch silicon photonics platform. The dark current measures approximately 38.6 μA at-21 V, indicating a breakdown voltage greater than-21 V for the device. The APDs exhibit a unitgain responsivity of 0.5 A/W at-10 V. At-15 V, their responsivity reaches 2.98 and 2.91 A/W with input powers of-10 and-25 dBm, respectively. The device's 3-dB bandwidth is 15 GHz with an input power of-15 dBm and a gain is 11.68. Experimental results show a peak in impedance at high bias voltages, attributed to inductor and capacitor(LC) circuit resonance, enhancing frequency response. Furthermore, 20 Gbps eye diagrams at-21 V and-9 dBm input power reveal signal to noise ratio(SNRs) of 5.30. This lateral SACM APD, compatible with the stand complementary metal oxide semiconductor(CMOS) process,shows that utilizing the peaking effect at low optical power increases bandwidth. 展开更多
关键词 PHOTODETECTORS optical communications responsIVITY 3-dB bandwidth
下载PDF
The physiological role of the unfolded protein response in the nervous system
19
作者 Shuangchan Wu Wensheng Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2411-2420,共10页
The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfo... The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness. 展开更多
关键词 MYELIN NEURON OLIGODENDROCYTE Schwann cell unfolded protein response
下载PDF
Micro-alloying of Zn and Ca in vacuum induction casted bioresorbable Mg system:Perspectives on corrosion resistance,cytocompatibility,and inflammatory response
20
作者 Manisha Behera Agnès Denys +2 位作者 Rajashekhara Shabadi Fabrice Allain Cosmin Gruescu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2812-2825,共14页
There is an increasing interest in biodegradable materials,such as magnesium,for orthopaedic implants.This is driven by their potential to address challenges like stress shielding and the need for secondary removal su... There is an increasing interest in biodegradable materials,such as magnesium,for orthopaedic implants.This is driven by their potential to address challenges like stress shielding and the need for secondary removal surgery.In this study,biodegradable magnesium alloys were produced using the Vacuum Induction Casting technique.The impact of micro-alloying Zn and Ca in Mg-xZn-0.2Ca(x=0.1,0.2,0.3,and 0.4 wt%)alloys on corrosion resistance,cytocompatibility,and early-stage inflammatory response was investigated.XRD and SEM-EDS analysis confirmed the presence of Ca_(2)Mg_(6)Zn_(3)secondary phases in all alloys.The Mg-0.3Zn-0.2Ca alloy exhibited the lowest corrosion rate and an elastic modulus of 36.8 GPa,resembling that of natural bone.Electrochemical measurements indicated a correlation between grain size and secondary phase volume fraction in explaining corrosion behaviour.In vitro degradation in simulated body fluid(SBF)for 21 days showed hydroxyapatite formation on alloy surfaces,aligning with electrochemical studies.In vitro cytotoxicity tests demonstrated the cytocompatibility of all alloys,with Mg-0.3Zn-0.2Ca having the highest cell viability over a 6-day cell culture.Investigation into the inflammatory response with RAW-Blue macrophages revealed the anti-inflammatory properties of Mg-0.3Zn-0.2Ca alloys.Micro-alloying with 0.3 wt%Zn and 0.2 wt%Ca enhanced mechanical properties,corrosion resistance,cytocompatibility,and immunomodulatory properties.This positions the Mg-0.3Zn-0.2Ca alloy as a promising biodegradable implant for bone fixation applications. 展开更多
关键词 Micro-alloying MgZnCa Corrosion resistance In vitro Anti-inflammatory response
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部