In this paper,the effect of low-temperature treatment on bacterial activity was investigated and its performance in preparing the consolidated sand was accessed.Four factors,including absorbance(OD600),p H,electric co...In this paper,the effect of low-temperature treatment on bacterial activity was investigated and its performance in preparing the consolidated sand was accessed.Four factors,including absorbance(OD600),p H,electric conductivity(EC)and urease activity(UA)were monitored to evaluate the bacterial activity.Moreover,the calcium carbonate yields under different bacterial solution and cementation solution volume ratios were determined.Finally,the compressive strength and microstructure of consolidated sand were investigated and the mechanism was explored by characterising the products among sand particles.The results showed that for both continuous and interval cultivation of bacteria,stable bacterial solution was harvested within the cultivation period of 30 h.Low-temperature treatment showed limited inhibition at early cultivation stage,while it had strong inhibition at middle cultivation stage.The interval cultivation improved the cultivation efficiency of bacteria.It was observed that the low-temperature preservation for a stable bacterial solution has little influence on UA before 4 days,while UA decreased seriously after its preservation time was extended to over 8 days.The optimal volume ratio of bacterial solution and substrate solution was 1:1,resulting in the highest calcium carbonate yield.The improved compressive strength of consolidated sand after 3 injections was attributed to the irregular-shaped calcite products,which coated and bonded the sand grains together.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
Photothermal therapy(PTT)has shown promising applications in tumor therapies.However,due to laserinduced nonspecific heating and heat diffusion,high levels of hyperthermia(>50℃)in tumor tissues often increase the ...Photothermal therapy(PTT)has shown promising applications in tumor therapies.However,due to laserinduced nonspecific heating and heat diffusion,high levels of hyperthermia(>50℃)in tumor tissues often increase the risk of cancer recurrence and metastasis,which causes the patient pain and destroys the surrounding normal cells and tissues.It is therefore important to develop photothermal strategies that have excellent therapeutic efficiencies under low-temperature conditions(≤45℃).In addition,the heterogeneity and complexity of tumors require the development of combinatorial antitumor treatments as the therapeutic efficiency of monomodal PTT is not currently sufficient.Herein,we have adopted a stepwise synthetic approach to develop a highly efficient multimodal therapeutic agent GA@PCOF@PDA by successive bonding defect functionalization(BDF),guest encapsulation,and surface modification steps.The covalently grafted porphyrinic photosensitizers(Por),encapsulated gambogic acid(GA),and surface-modified PDA film are independently responsible for photodynamic therapy(PDT),heat-shock protein 90(HSP90)down-regulation and chemotherapy(CT),and low-temperature PTT.This proof-ofconcept study illustrates an efficient,generalized approach to design high-performance covalent organic framework(COF)-based nanoagents that can be easily tailored to combine different therapeutic modalities for improved cancer theranostics at low temperatures.展开更多
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h...With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs.展开更多
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ...It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.展开更多
Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf...Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.展开更多
[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18...[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products.展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(...It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.展开更多
Objective:To evaluate the intraoperative trauma degree and postoperative speech function of low-temperature plasma radiofrequency surgery treatment of children with obstructive sleep apnea hypopnea syndrome (OSAHS).Me...Objective:To evaluate the intraoperative trauma degree and postoperative speech function of low-temperature plasma radiofrequency surgery treatment of children with obstructive sleep apnea hypopnea syndrome (OSAHS).Methods: A total of 118 children with OSAHS were divided into the control group (n=59) who received general surgery and the observation group (n=59) who received the low-temperature plasma radiofrequency surgery according to the random number table. Before operation and 24 h after operation, serum levels of stress hormones, acute phase proteins and inflammatory markers of two groups of children were determined, and the speech function parameter levels were assessed.Results:Before operation, differences in serum contents of stress hormones, acute phase proteins and inflammatory factors as well as speech function parameter levels were not statistically significant between two groups of patients. 24 h after operation, serum stress hormones adrenocorticotropic hormone (ACTH), angiotensin-2 (Ang-2), norepinephrine (NE), cortisol (Cor) contents of observation group were lower than those of control group, serum acute phase proteins haptoglobin (HP), ceruloplasmin (CER), and prealbumin (PA) contents were lower than those of control group, and serum inflammatory factors interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-27 (IL-27), tumor necrosis factorα(TNF-α) contents were lower than those of control group;speech function parameters NNE and NHR levels of observation group were higher than those of control group.Conclusion:Compared with routine surgery, low-temperature plasma radiofrequency surgery treatment of children with OSAHS causes less surgical trauma and more greatly improves the postoperative speech level.展开更多
In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment....In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment. The effect of ICP treatment process on the 2DEG channel as well as the formation mechanism of the low annealing temperature ohmic contact was investigated. An appropriate residual AlGaN thickness and a plasma-induced damage are considered to contribute to the low-temperature annealed ohmic contact. By using a single Al layer to replace the conventional Ti/Al stacks, ohmic contact with a contact resistance of 0.35 Ω.mm was obtained when annealed at 575 ℃ for 3 min. Good ohmic contact was also obtained by annealing at 500 ℃ for 20 rain.展开更多
Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The ...Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease.展开更多
Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namel...Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namely,an atmospheric-pressure plasma jet(APPJ)device to treat the nails infected with Trichophyton rubrum(T.rubrum)with the aid of persulfate solution.We found that persulfate solution had a promoting effect on plasma treatment of onychomycosis.With addition of sodium persulfate,the APPJ therapy could cure onychomycosis after several times of treatment.As such,this work has demonstrated a novel and effective approach which makes good use of LTP technique in the treatment of onychomycosis.展开更多
This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobi...This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria.展开更多
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ...Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.展开更多
α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 ...α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.展开更多
[Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid ...[Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid propagation and long-term conservation in vitro. [Method] With mature seeds of C. dayanum as explants, different media were selected to establish asymbiotic germination technique system. With protocorms as materials, conservation, resumptive proliferation and plant regeneration conditions were selected to establish low-temperature in vitro conservation technique system preliminarily. [Result] Mature seeds of C. dayanum could germinate after cultured 90 days on MS media as well as "Hyponex 1" media. The germination rate reached more than 98%. Protocorms inoculated in "Hyponex 1" media could be conserved continuously at 5 ℃ in dark for more than 18 months and the survival rate could reach 90%. Conserved protocorms could realize resumptive preliferation culture both on 1/2 MS and "Hyponex 1" media. The seed- ling-strengthening and rooting media were 1/2 MS media. [Conclusion] This research provided practical basis for in vitro conservation and rapid propagation of C. dayanum germplasm resource.展开更多
[Objective] This study aimed to analyze the effects of different concentrations of glycine betaine(GB) on oxidation metabolism in cucumbers under low-temperature stress and to investigate the possible mechanism of l...[Objective] This study aimed to analyze the effects of different concentrations of glycine betaine(GB) on oxidation metabolism in cucumbers under low-temperature stress and to investigate the possible mechanism of low-temperature resistance in cucumber during low-temperature storage. [Method] Cucumber cultivar Zhongnong No.8 was treated with 0, 5, 10 and 15 mmol/L GB solutions for 15 min and stored at 4 ℃. Changes in oxidative metabolism-related parameters were observed. [Result] Increasing exogenous GB concentration could enhance GB content in cucumbers, decline lipoxygenase(LOX) activity, improve peroxidase(POD) and catalase(CAT) activities, remove effectively hydrogen peroxide(H2O2) and reduce the accumulation of malondialdehyde(MDA). [Conclusion] Treating cucumbers with10 mmol/L GB exhibited the most remarkable effect.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2020YFC1806401)the Application Foundation Frontier Project of Wuhan City (Grant No.2020010601012200)
文摘In this paper,the effect of low-temperature treatment on bacterial activity was investigated and its performance in preparing the consolidated sand was accessed.Four factors,including absorbance(OD600),p H,electric conductivity(EC)and urease activity(UA)were monitored to evaluate the bacterial activity.Moreover,the calcium carbonate yields under different bacterial solution and cementation solution volume ratios were determined.Finally,the compressive strength and microstructure of consolidated sand were investigated and the mechanism was explored by characterising the products among sand particles.The results showed that for both continuous and interval cultivation of bacteria,stable bacterial solution was harvested within the cultivation period of 30 h.Low-temperature treatment showed limited inhibition at early cultivation stage,while it had strong inhibition at middle cultivation stage.The interval cultivation improved the cultivation efficiency of bacteria.It was observed that the low-temperature preservation for a stable bacterial solution has little influence on UA before 4 days,while UA decreased seriously after its preservation time was extended to over 8 days.The optimal volume ratio of bacterial solution and substrate solution was 1:1,resulting in the highest calcium carbonate yield.The improved compressive strength of consolidated sand after 3 injections was attributed to the irregular-shaped calcite products,which coated and bonded the sand grains together.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金supported by the National Natural Science Foundation of China(21971153 ,21671122)the Major Basic Research Projects of Shandong Natural Science Foundation(ZR2020ZD32)+2 种基金the Taishan Scholars Climbing Program of Shandong Provincethe Natural Science Foundation of Shandong Province(ZR202102280580)China Postdoctoral Science Foundation(2020M682225)。
文摘Photothermal therapy(PTT)has shown promising applications in tumor therapies.However,due to laserinduced nonspecific heating and heat diffusion,high levels of hyperthermia(>50℃)in tumor tissues often increase the risk of cancer recurrence and metastasis,which causes the patient pain and destroys the surrounding normal cells and tissues.It is therefore important to develop photothermal strategies that have excellent therapeutic efficiencies under low-temperature conditions(≤45℃).In addition,the heterogeneity and complexity of tumors require the development of combinatorial antitumor treatments as the therapeutic efficiency of monomodal PTT is not currently sufficient.Herein,we have adopted a stepwise synthetic approach to develop a highly efficient multimodal therapeutic agent GA@PCOF@PDA by successive bonding defect functionalization(BDF),guest encapsulation,and surface modification steps.The covalently grafted porphyrinic photosensitizers(Por),encapsulated gambogic acid(GA),and surface-modified PDA film are independently responsible for photodynamic therapy(PDT),heat-shock protein 90(HSP90)down-regulation and chemotherapy(CT),and low-temperature PTT.This proof-ofconcept study illustrates an efficient,generalized approach to design high-performance covalent organic framework(COF)-based nanoagents that can be easily tailored to combine different therapeutic modalities for improved cancer theranostics at low temperatures.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20220618)the National Natural Science Foundation of China(Nos.22078028 and 21978026)。
文摘With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs.
基金financially supported by the National Natural Science Foundation of China(52372191)the Natural Science Foundation of Xiamen,China(3502Z202372036)+1 种基金the China Postdoctoral Science Foundation(2022TQ0282)the support of the High-Performance Computing Center(HPCC)at Harbin Institute of Technology on first-principles calculations。
文摘It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.
文摘Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.
基金Supported by Science and Technology Achievement Transformation Program of Sichuan Province(2023ZHCG0079)Research and Application of Key Techniques for Industrialization of Frozen Prepared Meat Dishes(GCZX22-35)Sichuan Pig Innovation Team of National Agricultural Industry Technology System(scsztd-2024-08-07).
文摘[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products.
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3504100,2022YFB3506200)the National Natural Science Foundation of China(Nos.22208373,22376217)+1 种基金the Beijing Nova Program(No.20220484215)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC030)。
文摘It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.
文摘Objective:To evaluate the intraoperative trauma degree and postoperative speech function of low-temperature plasma radiofrequency surgery treatment of children with obstructive sleep apnea hypopnea syndrome (OSAHS).Methods: A total of 118 children with OSAHS were divided into the control group (n=59) who received general surgery and the observation group (n=59) who received the low-temperature plasma radiofrequency surgery according to the random number table. Before operation and 24 h after operation, serum levels of stress hormones, acute phase proteins and inflammatory markers of two groups of children were determined, and the speech function parameter levels were assessed.Results:Before operation, differences in serum contents of stress hormones, acute phase proteins and inflammatory factors as well as speech function parameter levels were not statistically significant between two groups of patients. 24 h after operation, serum stress hormones adrenocorticotropic hormone (ACTH), angiotensin-2 (Ang-2), norepinephrine (NE), cortisol (Cor) contents of observation group were lower than those of control group, serum acute phase proteins haptoglobin (HP), ceruloplasmin (CER), and prealbumin (PA) contents were lower than those of control group, and serum inflammatory factors interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-27 (IL-27), tumor necrosis factorα(TNF-α) contents were lower than those of control group;speech function parameters NNE and NHR levels of observation group were higher than those of control group.Conclusion:Compared with routine surgery, low-temperature plasma radiofrequency surgery treatment of children with OSAHS causes less surgical trauma and more greatly improves the postoperative speech level.
文摘In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment. The effect of ICP treatment process on the 2DEG channel as well as the formation mechanism of the low annealing temperature ohmic contact was investigated. An appropriate residual AlGaN thickness and a plasma-induced damage are considered to contribute to the low-temperature annealed ohmic contact. By using a single Al layer to replace the conventional Ti/Al stacks, ohmic contact with a contact resistance of 0.35 Ω.mm was obtained when annealed at 575 ℃ for 3 min. Good ohmic contact was also obtained by annealing at 500 ℃ for 20 rain.
基金supported by the National Natural Science Foundation of China,No.32130060(to XG).
文摘Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease.
基金We would like to thank Mr Chuankai Xia and Dr Chunjun Yang for providing Trichophyton rubrumA portion of this work(ESR measurement)was performed with assistant of Dr Wei Tong on the Steady High Magnetic Field Facilities,High Magnetic Field Laboratory,CASThis work is supported by National Natural Science Foundation of China(Nos.11635013 and 11775272).
文摘Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namely,an atmospheric-pressure plasma jet(APPJ)device to treat the nails infected with Trichophyton rubrum(T.rubrum)with the aid of persulfate solution.We found that persulfate solution had a promoting effect on plasma treatment of onychomycosis.With addition of sodium persulfate,the APPJ therapy could cure onychomycosis after several times of treatment.As such,this work has demonstrated a novel and effective approach which makes good use of LTP technique in the treatment of onychomycosis.
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria.
基金supported by grants from the Spanish Ministry of Health-PNSD(2019-I039 and 2023-I024)(to MP)FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación PID2021-1243590B-I100(to VMM)+2 种基金GVA(CIAICO/2021/203)(to MP)the Primary Addiction Care Research Network(RD21/0009/0005)(to MP)a predoctoral fellowship from the Generalitat Valenciana(ACIF/2021/338)(to CPC).
文摘Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.
基金Project (2006BAB02B05-04- 01/02) supported by the National Key Technologies R&D Program of China
文摘α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.
基金Research supported by national science and technology basic conditions platform program(2005DKA21000-5-63).~~
文摘[Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid propagation and long-term conservation in vitro. [Method] With mature seeds of C. dayanum as explants, different media were selected to establish asymbiotic germination technique system. With protocorms as materials, conservation, resumptive proliferation and plant regeneration conditions were selected to establish low-temperature in vitro conservation technique system preliminarily. [Result] Mature seeds of C. dayanum could germinate after cultured 90 days on MS media as well as "Hyponex 1" media. The germination rate reached more than 98%. Protocorms inoculated in "Hyponex 1" media could be conserved continuously at 5 ℃ in dark for more than 18 months and the survival rate could reach 90%. Conserved protocorms could realize resumptive preliferation culture both on 1/2 MS and "Hyponex 1" media. The seed- ling-strengthening and rooting media were 1/2 MS media. [Conclusion] This research provided practical basis for in vitro conservation and rapid propagation of C. dayanum germplasm resource.
文摘[Objective] This study aimed to analyze the effects of different concentrations of glycine betaine(GB) on oxidation metabolism in cucumbers under low-temperature stress and to investigate the possible mechanism of low-temperature resistance in cucumber during low-temperature storage. [Method] Cucumber cultivar Zhongnong No.8 was treated with 0, 5, 10 and 15 mmol/L GB solutions for 15 min and stored at 4 ℃. Changes in oxidative metabolism-related parameters were observed. [Result] Increasing exogenous GB concentration could enhance GB content in cucumbers, decline lipoxygenase(LOX) activity, improve peroxidase(POD) and catalase(CAT) activities, remove effectively hydrogen peroxide(H2O2) and reduce the accumulation of malondialdehyde(MDA). [Conclusion] Treating cucumbers with10 mmol/L GB exhibited the most remarkable effect.