Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) ...Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) forests with Ch inese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian Provinc e. Annual ene rgy return through litterfall was estimated as 12.648×10 6J·m -2 for the mixed fo rest, being 4 2% higher than that of the pure forest, and a large proportion of the energy return comprised leaf litter. The conversion efficiency of solar rad i ation energy into litterfall was 0 56% for mixed forest and 0 54% for pure for es t, respectively. The monthly energy flux in litterfall of Chinese fir showed a t hree-apex curve, peaked in March, August and December, respectively, which was s imilar to that in various fractions of leaf, twig, flower and fruit litter. The consistency in monthly patterns among different litter fractions of Chinese fir was attributed to their solid connections all the while. The monthly energy flux in litterfall of T. odorum culminated in January, May and August, the same was true for its leaf and twig litter. However, energy flux in flower litter only oc curred during March to May and that in fruit litter appeared in January and Marc h. The monthly dynamics of energy flux through litterfall of the two forests wer e both determined by their respective litterfall pattern of Chinese fir. Seasona l energy flux in litterfall for both mixed and pure forests followed the sequenc e of spring>winter>summer>autumn, but fluctuations in the former were less disti nct than those in the latter.展开更多
An investigation and on 13 year old (1984~1996) Chinese fir and Tsoong's tree mixed forests in Jianou City, Fujian Province, China was carried out to compare the influences of different interplanting types of i...An investigation and on 13 year old (1984~1996) Chinese fir and Tsoong's tree mixed forests in Jianou City, Fujian Province, China was carried out to compare the influences of different interplanting types of individual tree tree, row row, row strip (three rows) and pure Chinese fir stands on soil properties. Compared with the pure stands of Chinese fir, the mixed stands exerted a positive effect on soil fertility, with increases in soil organic matter, total N, available P and available K. Moreover, improvements were also observed in soil enzymatic activities, aggregate structure, structure stability, status of soil porosity, soil aeration and penetrability in mixed stands. The row row interplanted stands had the best effect on tree growth and soil properties among these mixed forests. In the southern subtropical region, the spreading of the row row mixing model of the two tree species would be helpful to preventing the soil from fertility deterioration caused by successive plantation of Chinese fir.展开更多
A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil p...A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.展开更多
Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern Ch...Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P 〈0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P 〈0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.展开更多
Soil samples collected from the surface soil (0-10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping Fujian, China were incubated for 90 days at the temperatures of 15℃, 25℃ and 35℃ ...Soil samples collected from the surface soil (0-10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping Fujian, China were incubated for 90 days at the temperatures of 15℃, 25℃ and 35℃ in laboratory. The soil CO2 evolution rates were measured at the incubation time of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 days. The results showed that CO2 evolution rates of soil samples varied significantly with incubation time and temperature during the incubation period. Mean CO2 evolution rate and cumulative amount of CO2 evolution from soil were highest at 35℃, followed by those at 25℃, and 15℃. Substantial differences in CO2 evolution rate were found in Q10 values calculated for the 2nd and 90th day of incubation. The Q10 value for the average CO2 evolution rate was 2.0 at the temperature range of 15-25℃, but it decreased to 1.2 at 25 35℃. Soil CO2 evolution rates decreased with the incubation time. The cumulative mineralized C at the end of incubation period (on the 90th day) was less than 10% of the initial C amounts prior to incubation.展开更多
Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fract...Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.展开更多
Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydro...Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydrologic process in most forest systems. SHAW, as a physically based, hydrological model, provides a useful tool for understanding and analyzing evapotranspiration processes. Using the measured data of a faber fir forest ecosystem in eastern Tibetan Plateau, this paper assessed the model performance in simulating evapotranspiration and variability and transferability of the model parameters. Comparison of the simulated results by SHAW to the measured data showed that SHAW performed satisfactorily. Based on analyzing the simulated results by the calibrated and validated SHAW, some ET characteristics of faber fir forest ecosys-tem in the eastern Tibetan Plateau were found: 1) Daily plant transpiration is low, and daily ET mainly comes from surface evaporation including canopy, litter and soil evaporation. Peak ET rate was approxi-mately 4mm/day, occurring around late July. 2) Solar radiation is the most important factor accounting for daily ET variation, while air temperature is the secondary, wind speed and air relative humidity are minor and soil water storage is the least important among all the related factors. 3) The ratio of annual ET to pre-cipitation for the faber fir forest ecosystem in eastern Tibetan Plateau is low (18%) compared with the other forest ecosystems owing to high-elevation, high atmospheric humidity and low annual temperature.展开更多
Based on the theory of forest burning link, the combustibility of the 6-year-old Chinese fir (Cunninghamia lanceolata) and macclure michelia (Michelia macclurei) mixed forest was determined in Youxi County, Fujian Pro...Based on the theory of forest burning link, the combustibility of the 6-year-old Chinese fir (Cunninghamia lanceolata) and macclure michelia (Michelia macclurei) mixed forest was determined in Youxi County, Fujian Province from 1988 to 1989. The results show that the daily mean moisture in the forest, moisture content of litter and the water reserves of the stand in mixed forest are 3%, 7.6% and 46.8% higher than that in pure stand respectively, the inflammables quantity and energy ratios of the stand biomass and total potential energy in mixed stand are 8.5% and 3.69% lower than that in pure stand respectively. Mixed forest can decrease the combustibility of stand.展开更多
The history of the Black Mountains in North Carolina and the southern Spruce-Fir ecosystem has been fraught with widespread forest decline since the mid 1960’s. Balsam Woolly Adelgid attacks and acidic deposition wer...The history of the Black Mountains in North Carolina and the southern Spruce-Fir ecosystem has been fraught with widespread forest decline since the mid 1960’s. Balsam Woolly Adelgid attacks and acidic deposition were two of the most recognized causes of decline. Uncertainty arose about the future of these forests, and projections were made regarding the endangerment or extinction of the endemic Fraser fir ([Pursh] Poiret). This study analyzed data sets from a permanent plot network in the Black Mountains dating 1985, 2002, and 2012. Indications that the Fraser fir population is stabilizing from a “boom-bust” cycle of population growth and has entered the stem exclusion stage of forest stand development are evident. Fir live stem density increased more than 250% from 1985 to 2002, and then declined 40% by 2012 at the highest elevations in the forest. Overall, fir appeared to be more impacted on western facing slopes than eastern ones. The population of red spruce experienced a steady decrease in live stem counts, but an increase in live basal area through all years, and at all elevation classes (1675 m, 1830 m, and 1980 m), indicating a normal progression through stand development. Red spruce was also most negatively impacted on western facing slopes. Live stem density was significantly higher (P 0.001) than eastern plots, but live basal area was similar between the two aspects. Atmospheric deposition concentrations of the four main acidic molecules at Mt. Mitchell all peaked in 1998, but decreased by 2012. These reductions, occurring shortly after tightened regulations in the 1990 amendments to the Clean Air Act may have potential implications for increased forest resilience.展开更多
This study was conducted in Xinkou Experimental Forestry Farm of Fujian Agricultural and Forestry University, Sanming, Fujian Province in January 1999. Taking pure stand of Chinese fir as control, the authors measured...This study was conducted in Xinkou Experimental Forestry Farm of Fujian Agricultural and Forestry University, Sanming, Fujian Province in January 1999. Taking pure stand of Chinese fir as control, the authors measured and studied the content of organic carbon, content of humic acid (HA), ratio of HA to fulvic acid (FA), and the characteristics of infrared light spectrum and visible light spectrum of soil humus in the mixed forest of Chinese fir and Tsoong?tree. Compared to humus composition in the pure stand of Chinese fir, the content of soil organic C, HA content, and the E4 value of HA for different layers of soil, except for the ratio of HA to FA, showed a significant increase in the mixed forest, while the ratios of E4 to E6 had a little decrease. The infrared light spectrum of humic acid had an absorptive peak at 1650 cm-1. It is concluded that the levels of humification and aromaticity of soil humus are higher in the mixed forest, which is favorable for the improvement of soil structure and nutrient supply, thus improving the soil fertility to a certain degree.展开更多
From September 1999 to July 2000, N and P concentrations of fine roots were measured with the method of sequential soil core at bimonthly intervals in a mixed forest of Tsoong's tree (Tsoongiodendron odorum Chun) ...From September 1999 to July 2000, N and P concentrations of fine roots were measured with the method of sequential soil core at bimonthly intervals in a mixed forest of Tsoong's tree (Tsoongiodendron odorum Chun) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian. The results showed that N, P concentration of Chinese fir and Tsoong's tree in fine roots were negatively related to root diameter size. The concentrations of N and P in living roots and dead roots were compared. The order of N concentration in fine roots in different samples was Tsoong's tree>undergrowth>Chinese fir, while that of P was undergrowth>Tsoong's tree>Chinese fir. For Chinese fir, the seasonal change of N, P concentrations in fine roots with various diameter classes showed a single-apex curve with a maximum in September. For Tsoong's tree, maximized concentration of N in fine roots appeared in July or September and maximized P concentration in May.展开更多
Changes in soil carbon pools under Chinese fir (Cunninghamia lanceolata) andbamboo (Phyllostachys pubescens) plantations substituted for a native forest (Quercus acutissima,Cyclobalanopsis glauca, Cas-tanopsis sclerop...Changes in soil carbon pools under Chinese fir (Cunninghamia lanceolata) andbamboo (Phyllostachys pubescens) plantations substituted for a native forest (Quercus acutissima,Cyclobalanopsis glauca, Cas-tanopsis sclerophylla, Platycarya strobilacea, Lithocarpus glaber) werestudied on the hills with acid parent rock and soils classified as red soils (Ferrisols) in Huzhou,Zhejiang Province of east China. It was found that total soil organic carbon (TSOC), easilyoxidisable carbon (EOC) and water-soluble organic carbon (WSOC) under bamboo plantation wereincreased, but microbial biomass carbon (MBC) was decreased. On the contrary, Chinese fir induceddeclines of all fractions of C including TSOC, EOC, WSOC and MBC. The percentages of the activefractions of soil C (EOC and WSOC) were increased in the plantations as compared to the nativebroad-leaved forest, but proportions of soil organic C as MBC were decreased. It could be concludedthat bamboo plantation had a great ability of not only fixing C but also accelerating soil C poolcycle, improving nutrient and microorganism activity; therefore, it is a good ecosystem and could berecommended for wide development. Chinese fir would shrink the soil C pool and deteriorate soilbiological fertility, so it did not benefit CO2 fixing and land sustainable utilization.展开更多
The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of success...The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LPI), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool Ⅱ (LP Ⅱ) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The noncellulose of carbohydrates included in LPI maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils.展开更多
Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in ...Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.展开更多
Subalpine fir decline (SFD) has killed more trees in Colorado's high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic fact...Subalpine fir decline (SFD) has killed more trees in Colorado's high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic factors. We examined the influence of varying combinations of average annual temperature and precipitation on the incidence and distribution of SFD. Climatic transition matrices generated in this study indicate that most healthy trees are found in climatic zones with moderate to low temperatures and high precipitation; whereas, SFD occurs mostly in zones of moderate temperatures and moderate precipitation. The contrasting distributions define an environmental mismatch. Forests matched with favorable climatic conditions thrive; those that are mismatched can become vulnerable to decline disease.展开更多
Background:Carbon(C),nitrogen(N),and phosphorus(P)stoichiometry is a key indicator of nutrient utilization in plants,and C/N/P ratios are related to the life histories and adaptation strategies of tree species.However...Background:Carbon(C),nitrogen(N),and phosphorus(P)stoichiometry is a key indicator of nutrient utilization in plants,and C/N/P ratios are related to the life histories and adaptation strategies of tree species.However,no consensus has been reached on how leaf stoichiometric characteristics are affected by forest type and stand ages.The relationships between leaf stoichiometry and geographical,meteorological,and soil factors also remain poorly understood.Methods:Leaf and soil were sampled from forest stands of different age groups(young,middle-aged,near-mature,and mature)in two forest types(Chinese fir(Cunninghamia lanceolata)forests and evergreen broadleaved forests).The relationships between leaf C,N,and P stoichiometric parameters and geographical,meteorological,and soil factors were analysed by using redundancy analysis(RDA)and stepwise linear regression analysis.Results:Leaf C concentrations peaked in the near-mature stands with increasing age irrespective of forest type.Leaf N and P concentrations fluctuated with a rising trend in Chinese fir forests,while decreased first and increased later from young to mature phases in natural evergreen broadleaved forests.Chinese fir forests were primarily limited by N and P,while natural evergreen broadleaved forests were more susceptible to P limitation.Leaf C,N,and P stoichiometric characteristics in Chinese fir forests were mainly affected by the soil total P concentration(SP),longitude(LNG),growing season precipitation(GSP)and mean temperature in July(JUT).The leaf C concentration was mainly affected by GSP and JUT;leaf N and P concentrations were both positively correlated with LNG;and leaf P was positively correlated with SP.In evergreen broadleaved forests,however,leaf stoichiometric parameters displayed significant correlations with latitude(LAT)and mean annual precipitation(MAP).Conclusions:Leaf stoichiometry differed among forest stands of different age groups and forest types.Leaf C,N,and P stoichiometry was primarily explained by the combinations of SP,LNG,GSP and JUT in Chinese fir forests.LAT and MAP were the main controlling factors affecting the variations in the leaf C,N,and P status in natural evergreen broadleaved forests,which supports the temperature-plant physiological hypothesis.These findings improve the understanding of the distribution patterns and driving mechanisms of leaf stoichiometry linked with stand age and forest type.展开更多
基金SupportedbytheFoundationofPost doctoralResearchof China (2 0 0 0F0 0 4 )
文摘Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) forests with Ch inese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian Provinc e. Annual ene rgy return through litterfall was estimated as 12.648×10 6J·m -2 for the mixed fo rest, being 4 2% higher than that of the pure forest, and a large proportion of the energy return comprised leaf litter. The conversion efficiency of solar rad i ation energy into litterfall was 0 56% for mixed forest and 0 54% for pure for es t, respectively. The monthly energy flux in litterfall of Chinese fir showed a t hree-apex curve, peaked in March, August and December, respectively, which was s imilar to that in various fractions of leaf, twig, flower and fruit litter. The consistency in monthly patterns among different litter fractions of Chinese fir was attributed to their solid connections all the while. The monthly energy flux in litterfall of T. odorum culminated in January, May and August, the same was true for its leaf and twig litter. However, energy flux in flower litter only oc curred during March to May and that in fruit litter appeared in January and Marc h. The monthly dynamics of energy flux through litterfall of the two forests wer e both determined by their respective litterfall pattern of Chinese fir. Seasona l energy flux in litterfall for both mixed and pure forests followed the sequenc e of spring>winter>summer>autumn, but fluctuations in the former were less disti nct than those in the latter.
文摘An investigation and on 13 year old (1984~1996) Chinese fir and Tsoong's tree mixed forests in Jianou City, Fujian Province, China was carried out to compare the influences of different interplanting types of individual tree tree, row row, row strip (three rows) and pure Chinese fir stands on soil properties. Compared with the pure stands of Chinese fir, the mixed stands exerted a positive effect on soil fertility, with increases in soil organic matter, total N, available P and available K. Moreover, improvements were also observed in soil enzymatic activities, aggregate structure, structure stability, status of soil porosity, soil aeration and penetrability in mixed stands. The row row interplanted stands had the best effect on tree growth and soil properties among these mixed forests. In the southern subtropical region, the spreading of the row row mixing model of the two tree species would be helpful to preventing the soil from fertility deterioration caused by successive plantation of Chinese fir.
基金Project(No.30170770)supported by the National Natural Science Foundation of China.Corresponding author.Tel:0599-8504990Fax:0599-8516481E-mail:ffcyys@public.npptt.fj.cn.
文摘A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.
基金Project supported by the National Natural Science Foundation of China (No. 30170770).
文摘Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P 〈0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P 〈0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.
基金Foundation project: This study was supported by China Postdoctoral Science Foundation (20070410226) and the Special Foundation for Youn Scientists of Fu'ian Province (2006F3038)Acknowledgement This research was sponsored by China Postdoctoral Science Foundation (20070410226) and the Special Foundation for Young Scientists of Fujian Province (2006F3038). The authors are grateful to Dr. Chen Guang-shui and Xie Jin-sheng for their valuable advice and to Qian Wei and Sun Jie for their help in the laboratory analyses.
文摘Soil samples collected from the surface soil (0-10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping Fujian, China were incubated for 90 days at the temperatures of 15℃, 25℃ and 35℃ in laboratory. The soil CO2 evolution rates were measured at the incubation time of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 days. The results showed that CO2 evolution rates of soil samples varied significantly with incubation time and temperature during the incubation period. Mean CO2 evolution rate and cumulative amount of CO2 evolution from soil were highest at 35℃, followed by those at 25℃, and 15℃. Substantial differences in CO2 evolution rate were found in Q10 values calculated for the 2nd and 90th day of incubation. The Q10 value for the average CO2 evolution rate was 2.0 at the temperature range of 15-25℃, but it decreased to 1.2 at 25 35℃. Soil CO2 evolution rates decreased with the incubation time. The cumulative mineralized C at the end of incubation period (on the 90th day) was less than 10% of the initial C amounts prior to incubation.
文摘Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.
文摘Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydrologic process in most forest systems. SHAW, as a physically based, hydrological model, provides a useful tool for understanding and analyzing evapotranspiration processes. Using the measured data of a faber fir forest ecosystem in eastern Tibetan Plateau, this paper assessed the model performance in simulating evapotranspiration and variability and transferability of the model parameters. Comparison of the simulated results by SHAW to the measured data showed that SHAW performed satisfactorily. Based on analyzing the simulated results by the calibrated and validated SHAW, some ET characteristics of faber fir forest ecosys-tem in the eastern Tibetan Plateau were found: 1) Daily plant transpiration is low, and daily ET mainly comes from surface evaporation including canopy, litter and soil evaporation. Peak ET rate was approxi-mately 4mm/day, occurring around late July. 2) Solar radiation is the most important factor accounting for daily ET variation, while air temperature is the secondary, wind speed and air relative humidity are minor and soil water storage is the least important among all the related factors. 3) The ratio of annual ET to pre-cipitation for the faber fir forest ecosystem in eastern Tibetan Plateau is low (18%) compared with the other forest ecosystems owing to high-elevation, high atmospheric humidity and low annual temperature.
文摘Based on the theory of forest burning link, the combustibility of the 6-year-old Chinese fir (Cunninghamia lanceolata) and macclure michelia (Michelia macclurei) mixed forest was determined in Youxi County, Fujian Province from 1988 to 1989. The results show that the daily mean moisture in the forest, moisture content of litter and the water reserves of the stand in mixed forest are 3%, 7.6% and 46.8% higher than that in pure stand respectively, the inflammables quantity and energy ratios of the stand biomass and total potential energy in mixed stand are 8.5% and 3.69% lower than that in pure stand respectively. Mixed forest can decrease the combustibility of stand.
文摘The history of the Black Mountains in North Carolina and the southern Spruce-Fir ecosystem has been fraught with widespread forest decline since the mid 1960’s. Balsam Woolly Adelgid attacks and acidic deposition were two of the most recognized causes of decline. Uncertainty arose about the future of these forests, and projections were made regarding the endangerment or extinction of the endemic Fraser fir ([Pursh] Poiret). This study analyzed data sets from a permanent plot network in the Black Mountains dating 1985, 2002, and 2012. Indications that the Fraser fir population is stabilizing from a “boom-bust” cycle of population growth and has entered the stem exclusion stage of forest stand development are evident. Fir live stem density increased more than 250% from 1985 to 2002, and then declined 40% by 2012 at the highest elevations in the forest. Overall, fir appeared to be more impacted on western facing slopes than eastern ones. The population of red spruce experienced a steady decrease in live stem counts, but an increase in live basal area through all years, and at all elevation classes (1675 m, 1830 m, and 1980 m), indicating a normal progression through stand development. Red spruce was also most negatively impacted on western facing slopes. Live stem density was significantly higher (P 0.001) than eastern plots, but live basal area was similar between the two aspects. Atmospheric deposition concentrations of the four main acidic molecules at Mt. Mitchell all peaked in 1998, but decreased by 2012. These reductions, occurring shortly after tightened regulations in the 1990 amendments to the Clean Air Act may have potential implications for increased forest resilience.
基金Foundation item:This paper was supported by Natural Science Foundation of Fujian Province (B0110025) and Foundation for University Key Teacher by the Ministry of Education.
文摘This study was conducted in Xinkou Experimental Forestry Farm of Fujian Agricultural and Forestry University, Sanming, Fujian Province in January 1999. Taking pure stand of Chinese fir as control, the authors measured and studied the content of organic carbon, content of humic acid (HA), ratio of HA to fulvic acid (FA), and the characteristics of infrared light spectrum and visible light spectrum of soil humus in the mixed forest of Chinese fir and Tsoong?tree. Compared to humus composition in the pure stand of Chinese fir, the content of soil organic C, HA content, and the E4 value of HA for different layers of soil, except for the ratio of HA to FA, showed a significant increase in the mixed forest, while the ratios of E4 to E6 had a little decrease. The infrared light spectrum of humic acid had an absorptive peak at 1650 cm-1. It is concluded that the levels of humification and aromaticity of soil humus are higher in the mixed forest, which is favorable for the improvement of soil structure and nutrient supply, thus improving the soil fertility to a certain degree.
基金The Foundation of Post-doctoral Research of China (1999, No 10), the Foundation for University Key Teacher by the Ministry of Ed
文摘From September 1999 to July 2000, N and P concentrations of fine roots were measured with the method of sequential soil core at bimonthly intervals in a mixed forest of Tsoong's tree (Tsoongiodendron odorum Chun) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian. The results showed that N, P concentration of Chinese fir and Tsoong's tree in fine roots were negatively related to root diameter size. The concentrations of N and P in living roots and dead roots were compared. The order of N concentration in fine roots in different samples was Tsoong's tree>undergrowth>Chinese fir, while that of P was undergrowth>Tsoong's tree>Chinese fir. For Chinese fir, the seasonal change of N, P concentrations in fine roots with various diameter classes showed a single-apex curve with a maximum in September. For Tsoong's tree, maximized concentration of N in fine roots appeared in July or September and maximized P concentration in May.
基金Project supported by the National Key Basic Research Support Foundation(NKBRSF)of China (No.G1999011809).
文摘Changes in soil carbon pools under Chinese fir (Cunninghamia lanceolata) andbamboo (Phyllostachys pubescens) plantations substituted for a native forest (Quercus acutissima,Cyclobalanopsis glauca, Cas-tanopsis sclerophylla, Platycarya strobilacea, Lithocarpus glaber) werestudied on the hills with acid parent rock and soils classified as red soils (Ferrisols) in Huzhou,Zhejiang Province of east China. It was found that total soil organic carbon (TSOC), easilyoxidisable carbon (EOC) and water-soluble organic carbon (WSOC) under bamboo plantation wereincreased, but microbial biomass carbon (MBC) was decreased. On the contrary, Chinese fir induceddeclines of all fractions of C including TSOC, EOC, WSOC and MBC. The percentages of the activefractions of soil C (EOC and WSOC) were increased in the plantations as compared to the nativebroad-leaved forest, but proportions of soil organic C as MBC were decreased. It could be concludedthat bamboo plantation had a great ability of not only fixing C but also accelerating soil C poolcycle, improving nutrient and microorganism activity; therefore, it is a good ecosystem and could berecommended for wide development. Chinese fir would shrink the soil C pool and deteriorate soilbiological fertility, so it did not benefit CO2 fixing and land sustainable utilization.
基金supported by the National Natural Sci-ence Foundation of China (No. 30470303)the Key Project of the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-405)
文摘The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LPI), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool Ⅱ (LP Ⅱ) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The noncellulose of carbohydrates included in LPI maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils.
基金the Basic Research Program of Fujian Province (No. 2000-F-004).
文摘Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.
基金supported by the USDA National Institute of Food and Agriculture,Mc Intire-Stennis
文摘Subalpine fir decline (SFD) has killed more trees in Colorado's high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic factors. We examined the influence of varying combinations of average annual temperature and precipitation on the incidence and distribution of SFD. Climatic transition matrices generated in this study indicate that most healthy trees are found in climatic zones with moderate to low temperatures and high precipitation; whereas, SFD occurs mostly in zones of moderate temperatures and moderate precipitation. The contrasting distributions define an environmental mismatch. Forests matched with favorable climatic conditions thrive; those that are mismatched can become vulnerable to decline disease.
基金supported by the National Natural Science Foundation of China(No.31971643)the Industry-University Cooperation Project of Fujian Science and Technology Department(Nos.2020N5008,2019N5009)+2 种基金the General program of Natural Science Foundation of Fujian Province of China(No.2018J01737)Special Funding Project of Fujian Provincial Department of Finance(SC-299)Minjiang Scholar Programme.
文摘Background:Carbon(C),nitrogen(N),and phosphorus(P)stoichiometry is a key indicator of nutrient utilization in plants,and C/N/P ratios are related to the life histories and adaptation strategies of tree species.However,no consensus has been reached on how leaf stoichiometric characteristics are affected by forest type and stand ages.The relationships between leaf stoichiometry and geographical,meteorological,and soil factors also remain poorly understood.Methods:Leaf and soil were sampled from forest stands of different age groups(young,middle-aged,near-mature,and mature)in two forest types(Chinese fir(Cunninghamia lanceolata)forests and evergreen broadleaved forests).The relationships between leaf C,N,and P stoichiometric parameters and geographical,meteorological,and soil factors were analysed by using redundancy analysis(RDA)and stepwise linear regression analysis.Results:Leaf C concentrations peaked in the near-mature stands with increasing age irrespective of forest type.Leaf N and P concentrations fluctuated with a rising trend in Chinese fir forests,while decreased first and increased later from young to mature phases in natural evergreen broadleaved forests.Chinese fir forests were primarily limited by N and P,while natural evergreen broadleaved forests were more susceptible to P limitation.Leaf C,N,and P stoichiometric characteristics in Chinese fir forests were mainly affected by the soil total P concentration(SP),longitude(LNG),growing season precipitation(GSP)and mean temperature in July(JUT).The leaf C concentration was mainly affected by GSP and JUT;leaf N and P concentrations were both positively correlated with LNG;and leaf P was positively correlated with SP.In evergreen broadleaved forests,however,leaf stoichiometric parameters displayed significant correlations with latitude(LAT)and mean annual precipitation(MAP).Conclusions:Leaf stoichiometry differed among forest stands of different age groups and forest types.Leaf C,N,and P stoichiometry was primarily explained by the combinations of SP,LNG,GSP and JUT in Chinese fir forests.LAT and MAP were the main controlling factors affecting the variations in the leaf C,N,and P status in natural evergreen broadleaved forests,which supports the temperature-plant physiological hypothesis.These findings improve the understanding of the distribution patterns and driving mechanisms of leaf stoichiometry linked with stand age and forest type.