期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
New bainite kinetics of high strength low alloy steel in fast cooling process
1
作者 Xuan-wei Lei Ji-hua Huang +1 位作者 Shu-hai Chen Xing-ke Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期229-233,共5页
Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation ... Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation morphological evolutions at a cooling rate of 8.3 K/s were directly observed by laser scanning confocal microscopy. This qualitative analysis suggests that bainite packet is more suitable to give a one-dimensional growth model if it is considered as a transformation unit. The nucleation rate of bainite packets in fast cooling process is assumed to give an a priori item. One-dimensional growth model with constant growth rate which is assumed as a function of cooling rate is adopted as well. Thus, the devel- oped new bainite kinetics is simple in expression and contains an adjustable parameter and an empirical pa rameter. Experimental results show upper bainite and lower bainite transformations in fast cooling processes. Their referential phase volume fractions are calculated by the expanded lever rule on the first derivative dilatometer curves. For the similar transformation mechanisms, upper bainite and lower bainite are considered to give the same kinetics. With considering the Nakamura's equation, the bainite kinetics is fitted with experimental data. Results show that bainite volume fractions and bainite transformation rates can be expressed precisely bY the newly developed bainite kinetics. 展开更多
关键词 Bainite kinetics Fast cooling process High strength low alloy steel Upper bainite lower bainite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部