The Early and Middle Triassic primary lower Yangtze sea basin was formed before the Yangtze and Sino. Korean blocks collided and were assembled. showing the characteristics of an open continental shelf.continental mar...The Early and Middle Triassic primary lower Yangtze sea basin was formed before the Yangtze and Sino. Korean blocks collided and were assembled. showing the characteristics of an open continental shelf.continental margin sea. In order to provide evidence useful for oil and gas exploration in the studied region, this paper centres on the features of the sediments and their facies framework in the basin and the sedimentation parameters such as the deposition rate, palaeotemperature, palaeosatinity, palaeodepth of water and palaeocurrents of the basin.展开更多
Since the West Pingdingshan Section in Chaohu was proposed as the candidate of the Global Stratotype Section and Point of the Induan-Olenekian boundary in 2003, the Lower Triassic of Chaohu has been extensively studie...Since the West Pingdingshan Section in Chaohu was proposed as the candidate of the Global Stratotype Section and Point of the Induan-Olenekian boundary in 2003, the Lower Triassic of Chaohu has been extensively studied. Based on the studies on the Lower Triassic of Chaohu, (1) a continuous conodont zonation is established, which has become an important reference for Lower Triassic stratigraphic correlation over the world; (2) the First Appearance Datum of conodont Neospathodus waageni was suggested and has been basically accepted as the primary marker to define the InduanOienekian boundary; (3) a characteristic Lower Triassic excursion of carbon isotopes was brought to light and has been proven to be not only an excellent index for the stratigraphic correlation but also a unique indication for the perturbation of ecological environments in the aftermath of the end-Permian mass extinction; (4) a magnetostratigraphic sequence is constituted with a certain biostratigraphic control in the low-latitude region and it presents an important correlation to the Boreal sequence; (5) a cyclostratigraphic study provides an alternative method to constrain the age of the chronostratigraphic units; and (6) a scheme of the Olenekian subdivision is recently suggested to define the boundary between the Smithian and Spathian Substages. In addition, Chaohu is also the type locality of the Chaohuan Stage, the upper stage of the Lower Triassic in the China Chronostratigraphic System.Thus, the Lower Triassic of Chaohu is not only a classic sequence in South China, but also a key reference sequence to the investigation of the corresponding stratigraphy and geological events over the world. The recent achievements are viewed here for an overall understanding of the sequence. Then the current situation of the Induan-Olenekian and Smithian-Spathian boundaries is discussed to provide a reference for later works.展开更多
The sedimentary-volcanic tuff (locally called “green-bean rock”) formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time a...The sedimentary-volcanic tuff (locally called “green-bean rock”) formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time and predominantly green in color. The green-bean rock is a perfect indicator for stratigraphic division. Its petrographic and geochemical features are unique, and it is composed mainly of glassy fragments and subordinately of crystal fragments and volcanic ash balls. Analysis of the major and trace elements and rare-earth elements (REE), as well as the related diagrams, permits us to believe that the green-bean rock is acidic volcanic material of the calc-alkaline series formed in the Indosinian orogenic belt on the Sino-Vietnam border, which was atmospherically transported to the tectonically stable areas and then deposited as sedimentary-volcanic rocks there. According to the age of green-bean rock, it is deduced that the boundary age of the Middle-Lower Triassic overlain by the sedimentary-volcanic tuff is about 247 Ma.展开更多
The stratigraphic division and correlation of the Lower/Middle Cambrian boundary is a global problem that has not yet been perfectly solved up to now. That is because there existed two global biogeographic regions dur...The stratigraphic division and correlation of the Lower/Middle Cambrian boundary is a global problem that has not yet been perfectly solved up to now. That is because there existed two global biogeographic regions during the period from Early Cambrian to Middle Cambrian. Although much work has been done from the angle of paleontology and great achievements have been acquired in this aspect, no biological assemblage has yet been established for global stratigraphic correlations due to the coexistence of the two global biogeographic regions —— the Atlantic biogeographic region and the Indian-Pacific biogeographic region during the Early-Middle Cambrian. So, to develop and establish other approaches to the stratigraphic division and correlation of the Lower/Middle Cambrian on a global scale is a possible way to solve the puzzling problem. This work systematically studied acritarch fossils from the Early-Middle Cambrian Kaili Formation at Taijiang County, Guizhou Province. The Lower/Middle Cambrian boundary was divided in terms of acritarch fossil assemblage. The divided boundary is generally consistent with what was divided by trilobite and can be correlated with the Lower/Middle Cambrian boundaries divided by acritarch assemblage in Siberia and Europe. On this basis, the Lower/Middle Cambrian boundary is divided in terms of an obvious carbon isotopic excursion on a global scale during the transitional period from Early Cambrian to Middle Cambrian boundaries in Siberia and North America. The method for the stratigraphic division and correlation of the Lower/Middle Cambrian boundary in terms of carbon isotopic oscillations is helpful to solving the global problem on the division and correlation of the Lower/Middle Cambrian boundary. It is also evidenced that the extinction of a lot of trilobites at the end of Early Cambrian is closely related with this event of carbon isotopic excursion.展开更多
This paper proposes a scheme for the definition of the Lower Triassic Induan Olenekian boundary (IOB) based on investigation of sections in Chaohu, Anhui Province, China as well as data accumulated from other studies...This paper proposes a scheme for the definition of the Lower Triassic Induan Olenekian boundary (IOB) based on investigation of sections in Chaohu, Anhui Province, China as well as data accumulated from other studies elsewhere. The conodont Neospathodus waageni is suggested as the index fossil of the boundary. According to the FAD of N. waageni , the IOB is at the base of bed 25 2 of the West Pingdingshan Section in Chaohu, 42.19 m above the Permian Triassic boundary, and it is slightly higher than the base of the Flemingites Euflemingites Ammonoid Zone at the section.展开更多
The Lower Triassic in Chaohu (巢湖) area, Anhui (安徽) Province, China, is well developed and its sequence is typical in South China. After a brief introduction of the Induan-Olenekian boundary of Chaohu, this art...The Lower Triassic in Chaohu (巢湖) area, Anhui (安徽) Province, China, is well developed and its sequence is typical in South China. After a brief introduction of the Induan-Olenekian boundary of Chaohu, this article presents some new data on conodonts. More than ten times of conodont samplings and investigations have recovered thousands of conodont specimens, which are especially rich in the Induan-Olenekian boundary strata at the West Pingdingshan Section in Chaohu City, Anhui Province. The most distinctive forms are the conodonts of the Neospathodus dieneri group and N. waageni group. The first occurrence of N. waageni eowaageni, which is regarded as the indicator of the Induan-Olenekian boundary, is situated at 40.49 m above the base of Yinkeng (殷坑) Formation. Some key conodonts and seven new specimens are introduced.展开更多
The Yanchang Formation is extensively developed in the Ordos Basin and its surrounding regions. As one of the best terrestrial Triassic sequences in China and the major oil-gas bearing formations in the Ordos Basin, i...The Yanchang Formation is extensively developed in the Ordos Basin and its surrounding regions. As one of the best terrestrial Triassic sequences in China and the major oil-gas bearing formations in the Ordos Basin, its age determination and stratigraphic assignment are important in geological survey and oil-gas exploration. It had been attributed to the Late Triassic and regarded as the typical representative of the Upper Triassic in northern China for a long time, although some scholars had already proposed that the lower part of this formation should be of the Middle Triassic age in the mid-late 20 th century. In this paper, we suggest that the lower and middle parts of the Yanchang Formation should be of the Ladinian and the bottom possibly belongs to the late Anisian of the Middle Triassic, mainly based on new fossils found in it and high resolution radiometric dating results. The main source rocks, namely the oil shales and mudstones of the Chang-7, are of the Ladinian Age. The upper part of the Yanchang Formation, namely the Chang-6 and the above parts, belongs to the Late Triassic. The uppermost of the Triassic is missed in most parts of the Ordos Basin. The Middle-Upper Triassic Series boundary lies in the Yanchang Formation, equivalent to the boundary between Chang-7 and Chang-6. The Ladinian is an important palaeoenvironmental turning point in the Ordos Basin. Palaeoenvironmental changes in the basin are coincidence with that of the Sichuan Basin and the main tectonic movement of the Qinling Mountains. It indicates that tectonic activities of the Qinling Mountains are related to the big palaeoenvironmental changes in both the Ordos and Sichuan Basins, which are caused by the same structural dynamic system during the Ladinian.展开更多
The Triassic "Green-bean Rock" (GBR) layers were widely recognized around the Early-Middle Triassic boundary interval in the Nanpanjiang Basin, South China. To determine the precise relationship between the GBR la...The Triassic "Green-bean Rock" (GBR) layers were widely recognized around the Early-Middle Triassic boundary interval in the Nanpanjiang Basin, South China. To determine the precise relationship between the GBR layers and the first appearance datum (FAD) of the conodont Chiosella timorensis, four Lower-Middle Triassic sections from the Nanpanjiang Basin, including the Gaimao, Bianyang lI, Zuodeng and Wantou sections have been studied in detail. Detailed conodont biostratigraphy convinces us that there is no exact temporal relationship between the GBR layers and first occurrence of Ch. timorensis. Moreover, the numbers of the GBR layers are different from the place to place within the Nanpanjiang Basin, and the time span of the GBR layers was much longer than previously estimated. Global correlations show that the FAD of Ch. timorensis is contemporaneous basinwide and worldwide and more suitable marker defining the Olenekian-Anisian boundary (Early-Middle Triassic boundary) than any other proxies.展开更多
The controversies on the division and correlation of the Devonian have never stopped since Lonsodale found and named the Devonian at Devonshire, Britain, especially on the determination and correlation of the Lower-Mi...The controversies on the division and correlation of the Devonian have never stopped since Lonsodale found and named the Devonian at Devonshire, Britain, especially on the determination and correlation of the Lower-Middle Devonian Boundary. The correlation between the different areas and sedimentary facies are still an international question although the international stratotype section has already been established. Recently,展开更多
Alluvial channel has always adjusted itself to the equilibrium state of sediment transport after it was artificially or naturally disturbed. How to maintain the equilibrium state of sediment transport and keep the riv...Alluvial channel has always adjusted itself to the equilibrium state of sediment transport after it was artificially or naturally disturbed. How to maintain the equilibrium state of sediment transport and keep the river regime stable has always been the concerns of fluvial geomorphologists. The channel in the middle and lower reaches of the Yangtze River is characterized by the staggered distribution of the bifurcated river and the single-thread river. The change of river regime is more violently in the bifurcated river than in the single-thread river. Whether the adjustment of the river regime in the bifurcated river can pass through the single-thread river and propagate to the downstream reaches affects the stabilities of the overall river regime. Studies show that the barrier river reach can block the upstream channel adjustment from propagating to the downstream reaches; therefore, it plays a key role in stabilizing the river regime. This study investigates 34 single-thread river reaches in the mid- dle and lower reaches of the Yangtze River. On the basis of the systematic summarization of the fluvial process of the middle and lower reaches of the Yangtze River, the control factors of barrier river reach are summarized and extracted: the planar morphology of single-thread and meandering; with no flow deflecting node distributed in the upper or middle part of the river reach; the hydraulic geometric coefficient is less than 4; the longitudinal gradient is greater than 12‰, the clay content of the concave bank is greater than 9.5%, and the median diameter of the bed sediment is greater than 0.158 mm. From the Navier-Stokes equation ,the calculation formula of the bending radius of flow dynamic axis is deduced and then the roles of these control factors on restricting the migration of the flow dynamic axis and the formation of the barrier river reach are analyzed. The barrier river reach is considered Such. When the ratio of the migration force of the flow dynamic boundary is less than 1 under different flow levels axis to the constraint force of the channel boundary is less than 1 under different flow levels.The mechanism of the barrier river reach is such that even when the upstream river regime adjusts, the channel boundary of this reach can always constrain the migration amplitude of the flow dynamic axis and centralize the planar position of the main stream line under different upstream river regime conditions, pro- viding a relatively stable incoming flow conditions for the downstream reaches, thereby blocking the upstream river regime adjustment from propagating to the downstream reaches.展开更多
文摘The Early and Middle Triassic primary lower Yangtze sea basin was formed before the Yangtze and Sino. Korean blocks collided and were assembled. showing the characteristics of an open continental shelf.continental margin sea. In order to provide evidence useful for oil and gas exploration in the studied region, this paper centres on the features of the sediments and their facies framework in the basin and the sedimentation parameters such as the deposition rate, palaeotemperature, palaeosatinity, palaeodepth of water and palaeocurrents of the basin.
基金supported by the Ministry of Science and Technology project (no. 2006FY120300-11)Ministry of Education project (no. 200804910503)National Natural Science Foundation of China (nos. 40830212, 40921062, 40972003)
文摘Since the West Pingdingshan Section in Chaohu was proposed as the candidate of the Global Stratotype Section and Point of the Induan-Olenekian boundary in 2003, the Lower Triassic of Chaohu has been extensively studied. Based on the studies on the Lower Triassic of Chaohu, (1) a continuous conodont zonation is established, which has become an important reference for Lower Triassic stratigraphic correlation over the world; (2) the First Appearance Datum of conodont Neospathodus waageni was suggested and has been basically accepted as the primary marker to define the InduanOienekian boundary; (3) a characteristic Lower Triassic excursion of carbon isotopes was brought to light and has been proven to be not only an excellent index for the stratigraphic correlation but also a unique indication for the perturbation of ecological environments in the aftermath of the end-Permian mass extinction; (4) a magnetostratigraphic sequence is constituted with a certain biostratigraphic control in the low-latitude region and it presents an important correlation to the Boreal sequence; (5) a cyclostratigraphic study provides an alternative method to constrain the age of the chronostratigraphic units; and (6) a scheme of the Olenekian subdivision is recently suggested to define the boundary between the Smithian and Spathian Substages. In addition, Chaohu is also the type locality of the Chaohuan Stage, the upper stage of the Lower Triassic in the China Chronostratigraphic System.Thus, the Lower Triassic of Chaohu is not only a classic sequence in South China, but also a key reference sequence to the investigation of the corresponding stratigraphy and geological events over the world. The recent achievements are viewed here for an overall understanding of the sequence. Then the current situation of the Induan-Olenekian and Smithian-Spathian boundaries is discussed to provide a reference for later works.
文摘The sedimentary-volcanic tuff (locally called “green-bean rock”) formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time and predominantly green in color. The green-bean rock is a perfect indicator for stratigraphic division. Its petrographic and geochemical features are unique, and it is composed mainly of glassy fragments and subordinately of crystal fragments and volcanic ash balls. Analysis of the major and trace elements and rare-earth elements (REE), as well as the related diagrams, permits us to believe that the green-bean rock is acidic volcanic material of the calc-alkaline series formed in the Indosinian orogenic belt on the Sino-Vietnam border, which was atmospherically transported to the tectonically stable areas and then deposited as sedimentary-volcanic rocks there. According to the age of green-bean rock, it is deduced that the boundary age of the Middle-Lower Triassic overlain by the sedimentary-volcanic tuff is about 247 Ma.
基金the National Natural Science Foundation of China(Grant No.40062001)the Governor Foundation of Guizhou Provincethe Post-doctoral Foundation of Guizhou University of Technology and the Excellent Youth Scientists and Technicians Foundation of Guizhou Province,and a special program by MSTC(Grant No.2002CCC02600).
文摘The stratigraphic division and correlation of the Lower/Middle Cambrian boundary is a global problem that has not yet been perfectly solved up to now. That is because there existed two global biogeographic regions during the period from Early Cambrian to Middle Cambrian. Although much work has been done from the angle of paleontology and great achievements have been acquired in this aspect, no biological assemblage has yet been established for global stratigraphic correlations due to the coexistence of the two global biogeographic regions —— the Atlantic biogeographic region and the Indian-Pacific biogeographic region during the Early-Middle Cambrian. So, to develop and establish other approaches to the stratigraphic division and correlation of the Lower/Middle Cambrian on a global scale is a possible way to solve the puzzling problem. This work systematically studied acritarch fossils from the Early-Middle Cambrian Kaili Formation at Taijiang County, Guizhou Province. The Lower/Middle Cambrian boundary was divided in terms of acritarch fossil assemblage. The divided boundary is generally consistent with what was divided by trilobite and can be correlated with the Lower/Middle Cambrian boundaries divided by acritarch assemblage in Siberia and Europe. On this basis, the Lower/Middle Cambrian boundary is divided in terms of an obvious carbon isotopic excursion on a global scale during the transitional period from Early Cambrian to Middle Cambrian boundaries in Siberia and North America. The method for the stratigraphic division and correlation of the Lower/Middle Cambrian boundary in terms of carbon isotopic oscillations is helpful to solving the global problem on the division and correlation of the Lower/Middle Cambrian boundary. It is also evidenced that the extinction of a lot of trilobites at the end of Early Cambrian is closely related with this event of carbon isotopic excursion.
基金ThisresearchissupportedbytheNationalNaturalScienceFoundationofChina (No .40 0 72 0 11) theMinistryofScienceandTechnology (No .2 0 0 1DEA2 0 0 2 0 )andtheChinese"973Program" (No .G2 0 0 0 0 7770 5 ) .
文摘This paper proposes a scheme for the definition of the Lower Triassic Induan Olenekian boundary (IOB) based on investigation of sections in Chaohu, Anhui Province, China as well as data accumulated from other studies elsewhere. The conodont Neospathodus waageni is suggested as the index fossil of the boundary. According to the FAD of N. waageni , the IOB is at the base of bed 25 2 of the West Pingdingshan Section in Chaohu, 42.19 m above the Permian Triassic boundary, and it is slightly higher than the base of the Flemingites Euflemingites Ammonoid Zone at the section.
基金the National Natural Science Foundation of China (Nos. 40621002, 90714010, 40574028)the State Key Laboratory of Geological Processes and Mineral Resources (GPMR2007).
文摘The Lower Triassic in Chaohu (巢湖) area, Anhui (安徽) Province, China, is well developed and its sequence is typical in South China. After a brief introduction of the Induan-Olenekian boundary of Chaohu, this article presents some new data on conodonts. More than ten times of conodont samplings and investigations have recovered thousands of conodont specimens, which are especially rich in the Induan-Olenekian boundary strata at the West Pingdingshan Section in Chaohu City, Anhui Province. The most distinctive forms are the conodonts of the Neospathodus dieneri group and N. waageni group. The first occurrence of N. waageni eowaageni, which is regarded as the indicator of the Induan-Olenekian boundary, is situated at 40.49 m above the base of Yinkeng (殷坑) Formation. Some key conodonts and seven new specimens are introduced.
基金supported by PetroChina Basic Research Programs (Grant Nos. 2011A0206, 2014A-0216)the National Basic Research Program of China (Grant No. 2014CB239001)
文摘The Yanchang Formation is extensively developed in the Ordos Basin and its surrounding regions. As one of the best terrestrial Triassic sequences in China and the major oil-gas bearing formations in the Ordos Basin, its age determination and stratigraphic assignment are important in geological survey and oil-gas exploration. It had been attributed to the Late Triassic and regarded as the typical representative of the Upper Triassic in northern China for a long time, although some scholars had already proposed that the lower part of this formation should be of the Middle Triassic age in the mid-late 20 th century. In this paper, we suggest that the lower and middle parts of the Yanchang Formation should be of the Ladinian and the bottom possibly belongs to the late Anisian of the Middle Triassic, mainly based on new fossils found in it and high resolution radiometric dating results. The main source rocks, namely the oil shales and mudstones of the Chang-7, are of the Ladinian Age. The upper part of the Yanchang Formation, namely the Chang-6 and the above parts, belongs to the Late Triassic. The uppermost of the Triassic is missed in most parts of the Ordos Basin. The Middle-Upper Triassic Series boundary lies in the Yanchang Formation, equivalent to the boundary between Chang-7 and Chang-6. The Ladinian is an important palaeoenvironmental turning point in the Ordos Basin. Palaeoenvironmental changes in the basin are coincidence with that of the Sichuan Basin and the main tectonic movement of the Qinling Mountains. It indicates that tectonic activities of the Qinling Mountains are related to the big palaeoenvironmental changes in both the Ordos and Sichuan Basins, which are caused by the same structural dynamic system during the Ladinian.
基金supported by 973 Program (No. 2011CB808800)the Natural Science Foundation of China (Nos. 41172024, 41272044, 41402005)+2 种基金the "111" project (No. B08030)the ‘Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)the State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (No. GBL11202)
文摘The Triassic "Green-bean Rock" (GBR) layers were widely recognized around the Early-Middle Triassic boundary interval in the Nanpanjiang Basin, South China. To determine the precise relationship between the GBR layers and the first appearance datum (FAD) of the conodont Chiosella timorensis, four Lower-Middle Triassic sections from the Nanpanjiang Basin, including the Gaimao, Bianyang lI, Zuodeng and Wantou sections have been studied in detail. Detailed conodont biostratigraphy convinces us that there is no exact temporal relationship between the GBR layers and first occurrence of Ch. timorensis. Moreover, the numbers of the GBR layers are different from the place to place within the Nanpanjiang Basin, and the time span of the GBR layers was much longer than previously estimated. Global correlations show that the FAD of Ch. timorensis is contemporaneous basinwide and worldwide and more suitable marker defining the Olenekian-Anisian boundary (Early-Middle Triassic boundary) than any other proxies.
基金Project supported by the National Natural Science Foundation of China Doctoral Foundation of National Education Committee
文摘The controversies on the division and correlation of the Devonian have never stopped since Lonsodale found and named the Devonian at Devonshire, Britain, especially on the determination and correlation of the Lower-Middle Devonian Boundary. The correlation between the different areas and sedimentary facies are still an international question although the international stratotype section has already been established. Recently,
基金National Natural Science Foundation of China, No.51379155, No.51339001, No.51579185 National Key Research Program of China, No.2016YFC0402306, No.2016YFC04022310, No.2016YFC0402106 CentraI Public Research Institutes Fundamental Research, No.TKS 160103
文摘Alluvial channel has always adjusted itself to the equilibrium state of sediment transport after it was artificially or naturally disturbed. How to maintain the equilibrium state of sediment transport and keep the river regime stable has always been the concerns of fluvial geomorphologists. The channel in the middle and lower reaches of the Yangtze River is characterized by the staggered distribution of the bifurcated river and the single-thread river. The change of river regime is more violently in the bifurcated river than in the single-thread river. Whether the adjustment of the river regime in the bifurcated river can pass through the single-thread river and propagate to the downstream reaches affects the stabilities of the overall river regime. Studies show that the barrier river reach can block the upstream channel adjustment from propagating to the downstream reaches; therefore, it plays a key role in stabilizing the river regime. This study investigates 34 single-thread river reaches in the mid- dle and lower reaches of the Yangtze River. On the basis of the systematic summarization of the fluvial process of the middle and lower reaches of the Yangtze River, the control factors of barrier river reach are summarized and extracted: the planar morphology of single-thread and meandering; with no flow deflecting node distributed in the upper or middle part of the river reach; the hydraulic geometric coefficient is less than 4; the longitudinal gradient is greater than 12‰, the clay content of the concave bank is greater than 9.5%, and the median diameter of the bed sediment is greater than 0.158 mm. From the Navier-Stokes equation ,the calculation formula of the bending radius of flow dynamic axis is deduced and then the roles of these control factors on restricting the migration of the flow dynamic axis and the formation of the barrier river reach are analyzed. The barrier river reach is considered Such. When the ratio of the migration force of the flow dynamic boundary is less than 1 under different flow levels axis to the constraint force of the channel boundary is less than 1 under different flow levels.The mechanism of the barrier river reach is such that even when the upstream river regime adjusts, the channel boundary of this reach can always constrain the migration amplitude of the flow dynamic axis and centralize the planar position of the main stream line under different upstream river regime conditions, pro- viding a relatively stable incoming flow conditions for the downstream reaches, thereby blocking the upstream river regime adjustment from propagating to the downstream reaches.