TiO2 nanotube(TiNT) arrays were deposited on boron-doped diamond films by a liquid-phase deposition method with ZnO nanorod arrays as the template.The different morphologies of TiNTs have been obtained by controllin...TiO2 nanotube(TiNT) arrays were deposited on boron-doped diamond films by a liquid-phase deposition method with ZnO nanorod arrays as the template.The different morphologies of TiNTs have been obtained by controlling the morphology of ZnO template.The X-ray diffraction and energy-dispersive X-ray analysis show that the ZnO nanorod array template has been removed in the TiNTs formation process.The crystalline quality of the TiNTs is improved by increasing the annealing temperature.The band gap of the TiNTs is about 3.25 eV estimated by the UV-Vis absorption spectroscopy,which is close to the value of bulk TiO2.In the photoluminescence spectrum,a broad visible emission in a range of ca.550-750 nm appears due to the surface oxygen vacancies and defects.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.51072066, 11247305), the PhD Programs Foundation of Ministry of Education of China(No.20100061110083), the Open Project of State Key Laboratory of Superhard Materials(Jilin University), China(No.201213) and the Youth Fund of Science and Technology Department of Jiangxi Province, China (No.20131522040044).
文摘TiO2 nanotube(TiNT) arrays were deposited on boron-doped diamond films by a liquid-phase deposition method with ZnO nanorod arrays as the template.The different morphologies of TiNTs have been obtained by controlling the morphology of ZnO template.The X-ray diffraction and energy-dispersive X-ray analysis show that the ZnO nanorod array template has been removed in the TiNTs formation process.The crystalline quality of the TiNTs is improved by increasing the annealing temperature.The band gap of the TiNTs is about 3.25 eV estimated by the UV-Vis absorption spectroscopy,which is close to the value of bulk TiO2.In the photoluminescence spectrum,a broad visible emission in a range of ca.550-750 nm appears due to the surface oxygen vacancies and defects.