Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has a...Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.展开更多
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r...Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.展开更多
This study reports the dosimetric response of a(ZnO)_(0.2)(TeO_(2))_(0.8)thin film sensor irradiated with high-energy X-ray radiation at various doses.The spray pyrolysis method was used for the film deposition on sod...This study reports the dosimetric response of a(ZnO)_(0.2)(TeO_(2))_(0.8)thin film sensor irradiated with high-energy X-ray radiation at various doses.The spray pyrolysis method was used for the film deposition on soda-lime glass substrate using zinc acetate dehydrate and tellurium dioxide powder as the starting precursors.The structural and morphological properties of the film were determined.The I-V characteristics measurements were performed during irradiation with a 6 MV X-ray beam from a Linac.The results revealed that the XRD pattern of the AS-deposited thin film is non-crystalline(amorphous)in nature.The FESEM image shows the non-uniform shape of nanoparticles agglomerated separately,and the EDX spectrum shows the presence of Te,Zn,and O in the film.The I-V characteristics measurements indicate that the current density increases linearly with X-ray doses(0-250 cGy)for all applied voltages(1-6 V).The sensitivity of the thin film sensor has been found to be in the range of 0.37-0.94 mA/cm^(2)/Gy.The current-voltage measurement test for fading normalised in percentage to day 0 was found in the order of day 0>day 15>day 30>day 1>day 2.These results are expected to be beneficial for fabricating cheap and practical X-ray sensors.展开更多
The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conv...The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge_2Sb_2Te_5(GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.展开更多
BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,th...BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,the effects of preoperative planning and intraoperative guidance with computed tomography(CT)/magnetic resonance imaging(MRI)registration techniques on PELD for LSS and postoperative rehabilitation outcomes were evaluated.METHODS This retrospective study was conducted with data from patients who underwent PELD for LSS between January 2021 and December 2023.Patients were assigned to preoperative CT/MRI registration and control groups.Data collected included the operative time,length of hospital stay,visual analog scale(VAS)scores for low back and leg pain,and the Japanese Orthopaedic Association(JOA)lumbar spine score.Differences between groups were assessed using Student’s t test.RESULTS Data from 135 patients(71 in the CT/MRI registration group,64 in the control group)were analyzed.The operative time was significantly shorter in the CT/MRI registration group(P=0.007).At 2 months postoperatively,both groups showed significant reductions in VAS leg and low back pain scores(all P<0.001)and improvements in the JOA score(both P<0.001).No complication or death occurred.Preoperatively,pain and JOA scores were similar between groups(P=0.830,P=0.470,and P=0.287,respectively).At 2 months postoperatively,patients in the CT/MRI registration group reported lower leg and low back pain levels(P<0.001 and P=0.001,respectively)and had higher JOA scores(P=0.004)than did patients in the control group.CONCLUSION Preoperative CT/MRI registration for PELD for LSS reduced the operative time and VAS pain scores at 2 months and improved JOA scores,demonstrating enhanced effectiveness and safety.展开更多
The right ascending lumbar vein is difficult to detect on anteroposterior abdominalradiographs because it overlaps with the inferior vena cava on anteroposteriorradiographs.Intensive observation by medical providers m...The right ascending lumbar vein is difficult to detect on anteroposterior abdominalradiographs because it overlaps with the inferior vena cava on anteroposteriorradiographs.Intensive observation by medical providers may be a cue fordiagnosis.However,knowledge of catheter misplacement of the right ascendinglumbar vein is also necessary,because misplacement cannot be suspected withoutthat awareness.展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
With the rapid growth of the autonomous system,deep learning has become integral parts to enumerate applications especially in the case of healthcare systems.Human body vertebrae are the longest and complex parts of t...With the rapid growth of the autonomous system,deep learning has become integral parts to enumerate applications especially in the case of healthcare systems.Human body vertebrae are the longest and complex parts of the human body.There are numerous kinds of conditions such as scoliosis,vertebra degeneration,and vertebrate disc spacing that are related to the human body vertebrae or spine or backbone.Early detection of these problems is very important otherwise patients will suffer from a disease for a lifetime.In this proposed system,we developed an autonomous system that detects lumbar implants and diagnoses scoliosis from the modified Vietnamese x-ray imaging.We applied two different approaches including pre-trained APIs and transfer learning with their pre-trained models due to the unavailability of sufficient x-ray medical imaging.The results show that transfer learning is suitable for the modified Vietnamese x-ray imaging data as compared to the pre-trained API models.Moreover,we also explored and analyzed four transfer learning models and two pre-trained API models with our datasets in terms of accuracy,sensitivity,and specificity.展开更多
This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a ...This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.展开更多
TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray ...TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray photoelectron spectrocopy studies provided that the Nls core-electron spectrum of TixAl1-xN thin film brodend with increasing Ti content, and the difference of the chemical shifts for Ti2p3/2 line between TiN and TixAl1-xN th77pj in film was 0.7 eV.展开更多
A diamond film with a size of 6×6×0.5 mm^3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high pu...A diamond film with a size of 6×6×0.5 mm^3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high purity and large grain size, which is larger than 300 μm. Its resistivity is higher than 10^12 W· cm. Interlaced-finger electrodes are imprinted onto the diamond film to develop an x-ray detector. Ohmic contact is confirmed by checking the linearity of its current–voltage curve. The dark current is lower than 0.1 n A under an electric field of 30 k V cm^-1. The time response is 220 ps. The sensitivity is about 125 m A W^-1 under a biasing voltage of 100 V.A good linear radiation dose rate is also confirmed. This diamond detector is used to measure x-ray on a Z-pinch, which has a double-layer 'nested tungsten wire array'. The pronounced peaks in the measured waveform clearly characterize the x-ray bursts, which proves the performance of this diamond detector.展开更多
Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide...Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide, zinc selenide, cadmium selenide and combinations thereof) obtained by electrochemical growth, in order to determine the composition of ultra-thin surface layers, to estimate film thickness, and perform depth profiling of multilayered heterostructures. The experimental data are treated on the basis of a simple absorption-diffraction model involving the glancing angle of X-ray incidence.展开更多
Equation(6)in Chin.Phys.090833(2000)is corrected.All subsequent derivations were given based on the correct Eq.(6),so the conclusions in the paper are not ffected by the rrata.
X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the as- sumptions that the material is composed of fine crystals with random orientation and the stress state is...X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the as- sumptions that the material is composed of fine crystals with random orientation and the stress state is biaxial and homogeneous through the x-ray penetrating region. The stress is calculated from the gradient of ε ~ sin^2 φ linear relation. But the method cannot be used in textured films due to nonlinear relation. In this paper, a novel method is proposed for measuring the multiaxial stresses in cubic films with any [hkl] fibre texture. As an example, a detailed analysis is given for measuring three-dimensional stresses in FCC films with [111] fibre texture.展开更多
TiN films deposited by the VCAD method at the substrate of stainless steel and superhigh speed tool steels are uniform and dense.Their colour,orientation and lattice parameter depend on deposited condition The lattice...TiN films deposited by the VCAD method at the substrate of stainless steel and superhigh speed tool steels are uniform and dense.Their colour,orientation and lattice parameter depend on deposited condition The lattice structure of deposited film,the change of the lattice parameter and its preferred orientation were studied by the XRD method,different behaviours of TiNx film were analysed.The lattice parameter of TiNx films is increased with the nitrogen content and The colour of TiNx film is strongly related to the content of Nitrogen also.The change of preferred orientation depends mainly on the Bias.展开更多
The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification...The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification is another key technique. In this paper, a weld X-ray film digitalizing system has been established with linear array CCD and highlight LED light source. Its space resolution can reach 0. 04 mm/pixel and scanning speed can reach 100 mm/s for an industrial film. The transfer function curves of the system have been measured and the results indicate that its image gray resolution can reach 88 G/D at 4. 5D, and its dynamic range can be wider than 2. OD. In order to facilitate the evaluation of large welded structure, a panoramic evaluation algorithm is developed also. The algorithm includes image matching, image fusion and panoramic evaluation of the long linked film image.展开更多
Significant advancement in thin-film cadmium telluride (CdTe) deposition techniques in recent years has made this material attractive for the development of low-cost large area detector. Here we evaluate the intrinsic...Significant advancement in thin-film cadmium telluride (CdTe) deposition techniques in recent years has made this material attractive for the development of low-cost large area detector. Here we evaluate the intrinsic performance of the detector for a range of energies relevant to diagnostic imaging applications, such as fluoroscopy. The input x-ray spectra for a set of tube potentials ranging from 70 to 140 kVp were computed with the tungsten anode spectral model using interpolating polynomials (TASMIP) based on the measured output of our diagnostic x-ray simulator. Frequency-dependent detector performance analysis was conducted through Monte Carlo simulations of energy deposition within the detector. Intrinsic modulation transfer functions (MTF), noise power spectra (NPS), and detective quantum efficiencies (DQE) were computed for a set of CdTe detectors of varying thickness, from 100 to 1000 μm. MTF behavior at higher frequencies was affected by thickness and input energy, NPS increased with film thickness and energy, and the resultant DQE(f) decreased with increasing the input energy, but increased with the thickness of the detector. We found that the optimal thickness of CdTe under diagnostic x-ray beam is in the range of 300 to 600 μm. Physical properties of CdTe, such as the high atomic number and density, used in direct detection configuration, together with the recently established thin-film manufacturing techniques makes this technology a promising photoconductor for large area diagnostic flat panel imaging.展开更多
Chemically synthesized ZnS thin film is found to be a good x-ray radiation sensor. We report the effect of annealing on the x-ray radiation detection sensitivity of a ZnS thin film synthesized by a chemical bath depos...Chemically synthesized ZnS thin film is found to be a good x-ray radiation sensor. We report the effect of annealing on the x-ray radiation detection sensitivity of a ZnS thin film synthesized by a chemical bath deposition technique. The chemically synthesized ZnS films are annealed at 333, 363 and 393K for 1 h. Structural analyses show that the lattice defects in the films decrease with annealing. Further, the band gap is also found to decrease from 3.38 to 3.21 eV after annealing at 393K. Current-voltage characteristics of the films are studied under dark and x-ray irradiation conditions. Due to the decrease of lattice defects and band gap, the conductivity under dark conditions is found to increase from 2.06 × 10^-6 to 1.69 × 10^-5 S/em, while that under x-ray irradiation increases from 4.13 × 10^-5 to 5.28 ×10^-5 S/cm. On the other hand, the x-ray radiation detection sensitivity of the films is found to decrease with annealing. This decrease of detection sensitivity is attributed to the decrease of the band gap as well as some structural and surface morphological changes occurring after annealing.展开更多
Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this in...Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.展开更多
As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties a...As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties and easy fabrication method. X-ray photoelectron spectroscopy (XPS) was used to determine the stoichiometry and composition of electroless Sb<sub>2</sub>Se<sub>3</sub> thin films using depth profile studies. The surface layers were analyzed nearly stoichiometric. But the abundant amount of antimony makes the inner layer electrically more conductive.展开更多
基金supported by the project“PARIDE”(Perovskite Advanced Radiotherapy&Imaging Detectors),funded under the Regional Research and Innovation Programme POR-FESR Lazio 2014-2020(project number:A0375-2020-36698).
文摘Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.
基金the financially support of the National Natural Science Foundation of China(12164051)the Joint Foundation of Provincial Science and Technology Department-Double First-class Construction of Yunnan University(2019FY003016)+4 种基金the Young Top Talent Project of Yunnan Province(YNWR-QNBJ-2018-229)the financially support by Yunnan Major Scientific and Technological Projects(202202AG050016)Advanced Analysis and Measurement Center of Yunnan University for the sample characterization service and the Postgraduate Research and Innovation Foundation of Yunnan University(2021Y036)the financially support of the National Natural Science Foundation of China(62064013)the Application Basic Research Project of Yunnan Province[2019FB130]。
文摘Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.
文摘This study reports the dosimetric response of a(ZnO)_(0.2)(TeO_(2))_(0.8)thin film sensor irradiated with high-energy X-ray radiation at various doses.The spray pyrolysis method was used for the film deposition on soda-lime glass substrate using zinc acetate dehydrate and tellurium dioxide powder as the starting precursors.The structural and morphological properties of the film were determined.The I-V characteristics measurements were performed during irradiation with a 6 MV X-ray beam from a Linac.The results revealed that the XRD pattern of the AS-deposited thin film is non-crystalline(amorphous)in nature.The FESEM image shows the non-uniform shape of nanoparticles agglomerated separately,and the EDX spectrum shows the presence of Te,Zn,and O in the film.The I-V characteristics measurements indicate that the current density increases linearly with X-ray doses(0-250 cGy)for all applied voltages(1-6 V).The sensitivity of the thin film sensor has been found to be in the range of 0.37-0.94 mA/cm^(2)/Gy.The current-voltage measurement test for fading normalised in percentage to day 0 was found in the order of day 0>day 15>day 30>day 1>day 2.These results are expected to be beneficial for fabricating cheap and practical X-ray sensors.
基金financially supported by the National Natural Science Foundation of China(Grant No.62074089)the Natural Science Foundation of Ningbo City,China(Grant No.2022J072)+1 种基金the Youth Science and Technology Innovation Leading Talent Project of Ningbo City,China(Grant No.2023QL005)sponsored by the K.C.Wong Magna Fund in Ningbo University。
文摘The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge_2Sb_2Te_5(GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.
基金Supported by Health Commission of Shanxi Province,No.2021XM39.
文摘BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,the effects of preoperative planning and intraoperative guidance with computed tomography(CT)/magnetic resonance imaging(MRI)registration techniques on PELD for LSS and postoperative rehabilitation outcomes were evaluated.METHODS This retrospective study was conducted with data from patients who underwent PELD for LSS between January 2021 and December 2023.Patients were assigned to preoperative CT/MRI registration and control groups.Data collected included the operative time,length of hospital stay,visual analog scale(VAS)scores for low back and leg pain,and the Japanese Orthopaedic Association(JOA)lumbar spine score.Differences between groups were assessed using Student’s t test.RESULTS Data from 135 patients(71 in the CT/MRI registration group,64 in the control group)were analyzed.The operative time was significantly shorter in the CT/MRI registration group(P=0.007).At 2 months postoperatively,both groups showed significant reductions in VAS leg and low back pain scores(all P<0.001)and improvements in the JOA score(both P<0.001).No complication or death occurred.Preoperatively,pain and JOA scores were similar between groups(P=0.830,P=0.470,and P=0.287,respectively).At 2 months postoperatively,patients in the CT/MRI registration group reported lower leg and low back pain levels(P<0.001 and P=0.001,respectively)and had higher JOA scores(P=0.004)than did patients in the control group.CONCLUSION Preoperative CT/MRI registration for PELD for LSS reduced the operative time and VAS pain scores at 2 months and improved JOA scores,demonstrating enhanced effectiveness and safety.
文摘The right ascending lumbar vein is difficult to detect on anteroposterior abdominalradiographs because it overlaps with the inferior vena cava on anteroposteriorradiographs.Intensive observation by medical providers may be a cue fordiagnosis.However,knowledge of catheter misplacement of the right ascendinglumbar vein is also necessary,because misplacement cannot be suspected withoutthat awareness.
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
文摘With the rapid growth of the autonomous system,deep learning has become integral parts to enumerate applications especially in the case of healthcare systems.Human body vertebrae are the longest and complex parts of the human body.There are numerous kinds of conditions such as scoliosis,vertebra degeneration,and vertebrate disc spacing that are related to the human body vertebrae or spine or backbone.Early detection of these problems is very important otherwise patients will suffer from a disease for a lifetime.In this proposed system,we developed an autonomous system that detects lumbar implants and diagnoses scoliosis from the modified Vietnamese x-ray imaging.We applied two different approaches including pre-trained APIs and transfer learning with their pre-trained models due to the unavailability of sufficient x-ray medical imaging.The results show that transfer learning is suitable for the modified Vietnamese x-ray imaging data as compared to the pre-trained API models.Moreover,we also explored and analyzed four transfer learning models and two pre-trained API models with our datasets in terms of accuracy,sensitivity,and specificity.
基金Project supported by the National Natural Science Foundation of China (Grant No 102750770)
文摘This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.
基金This work was supported by the National Natural Science Foundation of China under grant No.10474074the Hubei Natural Science Foundation under grant No.2001ABB060.
文摘TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray photoelectron spectrocopy studies provided that the Nls core-electron spectrum of TixAl1-xN thin film brodend with increasing Ti content, and the difference of the chemical shifts for Ti2p3/2 line between TiN and TixAl1-xN th77pj in film was 0.7 eV.
基金supported by the National Key R&D Program of China(Grant No.2017YFE0301300)the Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX2018B588)。
文摘A diamond film with a size of 6×6×0.5 mm^3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high purity and large grain size, which is larger than 300 μm. Its resistivity is higher than 10^12 W· cm. Interlaced-finger electrodes are imprinted onto the diamond film to develop an x-ray detector. Ohmic contact is confirmed by checking the linearity of its current–voltage curve. The dark current is lower than 0.1 n A under an electric field of 30 k V cm^-1. The time response is 220 ps. The sensitivity is about 125 m A W^-1 under a biasing voltage of 100 V.A good linear radiation dose rate is also confirmed. This diamond detector is used to measure x-ray on a Z-pinch, which has a double-layer 'nested tungsten wire array'. The pronounced peaks in the measured waveform clearly characterize the x-ray bursts, which proves the performance of this diamond detector.
文摘Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide, zinc selenide, cadmium selenide and combinations thereof) obtained by electrochemical growth, in order to determine the composition of ultra-thin surface layers, to estimate film thickness, and perform depth profiling of multilayered heterostructures. The experimental data are treated on the basis of a simple absorption-diffraction model involving the glancing angle of X-ray incidence.
文摘Equation(6)in Chin.Phys.090833(2000)is corrected.All subsequent derivations were given based on the correct Eq.(6),so the conclusions in the paper are not ffected by the rrata.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2004CB619302), and the National Natural Science Foundation of China (Grant No 50271038).
文摘X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the as- sumptions that the material is composed of fine crystals with random orientation and the stress state is biaxial and homogeneous through the x-ray penetrating region. The stress is calculated from the gradient of ε ~ sin^2 φ linear relation. But the method cannot be used in textured films due to nonlinear relation. In this paper, a novel method is proposed for measuring the multiaxial stresses in cubic films with any [hkl] fibre texture. As an example, a detailed analysis is given for measuring three-dimensional stresses in FCC films with [111] fibre texture.
文摘TiN films deposited by the VCAD method at the substrate of stainless steel and superhigh speed tool steels are uniform and dense.Their colour,orientation and lattice parameter depend on deposited condition The lattice structure of deposited film,the change of the lattice parameter and its preferred orientation were studied by the XRD method,different behaviours of TiNx film were analysed.The lattice parameter of TiNx films is increased with the nitrogen content and The colour of TiNx film is strongly related to the content of Nitrogen also.The change of preferred orientation depends mainly on the Bias.
文摘The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification is another key technique. In this paper, a weld X-ray film digitalizing system has been established with linear array CCD and highlight LED light source. Its space resolution can reach 0. 04 mm/pixel and scanning speed can reach 100 mm/s for an industrial film. The transfer function curves of the system have been measured and the results indicate that its image gray resolution can reach 88 G/D at 4. 5D, and its dynamic range can be wider than 2. OD. In order to facilitate the evaluation of large welded structure, a panoramic evaluation algorithm is developed also. The algorithm includes image matching, image fusion and panoramic evaluation of the long linked film image.
文摘Significant advancement in thin-film cadmium telluride (CdTe) deposition techniques in recent years has made this material attractive for the development of low-cost large area detector. Here we evaluate the intrinsic performance of the detector for a range of energies relevant to diagnostic imaging applications, such as fluoroscopy. The input x-ray spectra for a set of tube potentials ranging from 70 to 140 kVp were computed with the tungsten anode spectral model using interpolating polynomials (TASMIP) based on the measured output of our diagnostic x-ray simulator. Frequency-dependent detector performance analysis was conducted through Monte Carlo simulations of energy deposition within the detector. Intrinsic modulation transfer functions (MTF), noise power spectra (NPS), and detective quantum efficiencies (DQE) were computed for a set of CdTe detectors of varying thickness, from 100 to 1000 μm. MTF behavior at higher frequencies was affected by thickness and input energy, NPS increased with film thickness and energy, and the resultant DQE(f) decreased with increasing the input energy, but increased with the thickness of the detector. We found that the optimal thickness of CdTe under diagnostic x-ray beam is in the range of 300 to 600 μm. Physical properties of CdTe, such as the high atomic number and density, used in direct detection configuration, together with the recently established thin-film manufacturing techniques makes this technology a promising photoconductor for large area diagnostic flat panel imaging.
文摘Chemically synthesized ZnS thin film is found to be a good x-ray radiation sensor. We report the effect of annealing on the x-ray radiation detection sensitivity of a ZnS thin film synthesized by a chemical bath deposition technique. The chemically synthesized ZnS films are annealed at 333, 363 and 393K for 1 h. Structural analyses show that the lattice defects in the films decrease with annealing. Further, the band gap is also found to decrease from 3.38 to 3.21 eV after annealing at 393K. Current-voltage characteristics of the films are studied under dark and x-ray irradiation conditions. Due to the decrease of lattice defects and band gap, the conductivity under dark conditions is found to increase from 2.06 × 10^-6 to 1.69 × 10^-5 S/em, while that under x-ray irradiation increases from 4.13 × 10^-5 to 5.28 ×10^-5 S/cm. On the other hand, the x-ray radiation detection sensitivity of the films is found to decrease with annealing. This decrease of detection sensitivity is attributed to the decrease of the band gap as well as some structural and surface morphological changes occurring after annealing.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFF0701202)the National Natural Science Foundation of China(Grant No.11875087)。
文摘Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.
文摘As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties and easy fabrication method. X-ray photoelectron spectroscopy (XPS) was used to determine the stoichiometry and composition of electroless Sb<sub>2</sub>Se<sub>3</sub> thin films using depth profile studies. The surface layers were analyzed nearly stoichiometric. But the abundant amount of antimony makes the inner layer electrically more conductive.