The hole injection,the radiative recombination and the device luminescent efficiencies of amorphous silicon carbide thin film p-i-n junction light emitting diodes are quantitatively calculated,and the effect of the ca...The hole injection,the radiative recombination and the device luminescent efficiencies of amorphous silicon carbide thin film p-i-n junction light emitting diodes are quantitatively calculated,and the effect of the carrier(especially the hole) injection and recombination processes on the device luminescent characteristics are revealed.Without considering the device junction temperature,it is found that the device luminescent efficiency mainly depends on the hole injection efficiency at low field and the hole radiative recombination efficiency at high field respectively.The theoretical analyses are in well agreement with the experimental results.展开更多
The photoacoustic spectra of Eu ( benz)(3) (.) ( phen)(2) ( benz: benzoate, phen: phenanthroline) and Eu-0.(8)Ln(0.2)(benz)(3)(.)(phen)(2)(Ln(3+) : La3+ or Nd3+) were reported. The intermolecular energy transfer proce...The photoacoustic spectra of Eu ( benz)(3) (.) ( phen)(2) ( benz: benzoate, phen: phenanthroline) and Eu-0.(8)Ln(0.2)(benz)(3)(.)(phen)(2)(Ln(3+) : La3+ or Nd3+) were reported. The intermolecular energy transfer processes were studied from the point of the nonradiative transitions. Combined with the fluorescence spectroscopy, photoacoustic spectroscopy reflects the variation of the luminescence efficiencies of solid samples. The luminescence efficiency increases when La3+ is introduced, but it decreases greatly when Nd3+ is added, which is due to the difference of intermolecular energy transfer processes. The models of intramolecular and intermolecular energy transfer and relaxation processes were established.展开更多
We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special t...We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering processes may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.展开更多
A novel organic fluorophor with high solid state luminescent efficiency based on 1,4-bis(2,2-di(pyridin-2-yl)- vinyl)benzene (BDP2VB) was designed and synthesized. It emits faintly in solution, but becomes a str...A novel organic fluorophor with high solid state luminescent efficiency based on 1,4-bis(2,2-di(pyridin-2-yl)- vinyl)benzene (BDP2VB) was designed and synthesized. It emits faintly in solution, but becomes a strong emitter in the aggregate state, demonstrating its aggregation induced emission (AIE) property. According to the crystal struc- ture analysis, J-type aggregation was formed in the packing mode of the molecule, which was demonstrated to be beneficial to gain high fluorescent quantum efficiency in solid state. Additionally, the emission color of BDP2VB can change dramatically in solid state as well as in solution by the protonation stimuli.展开更多
Tb^3+ and Ce^3+ co-activated LiZnPO4 phosphors with high luminescence efficiency were synthesized by a high temperature solid-state reaction at 1000 ℃ for 3 h. The XRD patterns, photoluminescence spectra and SEM we...Tb^3+ and Ce^3+ co-activated LiZnPO4 phosphors with high luminescence efficiency were synthesized by a high temperature solid-state reaction at 1000 ℃ for 3 h. The XRD patterns, photoluminescence spectra and SEM were recorded and the effects ofTb^3+and Ce^3+ concentration, sintering condition on the luminescent properties of as-synthesized phosphors were investigated. The emission spectra under ultraviolet (200-300 nm) radiation showed a dominant peak at 543 nm attributed to the ^5D4→^7F5 transition of Tb^3+, which was greatly enhanced by the co-doping of Ce^3+, indicating that there occurred an efficient non-radiative energy transfer from Ce^3+ to Th^3+. The optimal doping concentrations of Tb^3+ and Ce^3+ were determined to be 9% and 10%, respectively.展开更多
Fabrication of efficient solid luminogens with tunable emission is both fundamentally significant and technically important. Herein, based on our previous strategy for the construction of efficient and multifunctional...Fabrication of efficient solid luminogens with tunable emission is both fundamentally significant and technically important. Herein, based on our previous strategy for the construction of efficient and multifunctional solid luminogens through the combination of diverse aggregation-induced emission (ALE) units with other functional moieties, a group of luminophores with electron donor-acceptor (D-A) structure and typical intramolecular charge transfer (ICT) characteristics, namely CZ-DCDPP, DPA-DCDPP and DBPA-DCDPP were synthesized and investigated. The presence of twisting and AlE-active 2,3- dicyano-S,6-diphenylpyrazine (DCDPP) moiety endows them highly emissive in the solid states, whereas the introduction of arylamines with varied electron-donating capacity and different conjugation render them with tunable solid emissions from green to red. While CZ-DCDPP and DPA-DCDPP solids exhibit distinct mechanochromism, both DPA-DCDPP and DBPA-DCDPP solids can generate efficient red emission. Owing to their high efficiency, remarkable thermal and morphological stabilities and moreover red emission, they are promising for diverse optoelectronic and biological applications.展开更多
Two europium-bearing organic frameworks,termed as EuTPO-1 and EuTPO-2(H_(3)TPO=tris(4-carboxylphenyI)-phosphineoxide),are reported in this work.A series of characterizations of EuTPO-1and EuTPO-2,such as X-ray crystal...Two europium-bearing organic frameworks,termed as EuTPO-1 and EuTPO-2(H_(3)TPO=tris(4-carboxylphenyI)-phosphineoxide),are reported in this work.A series of characterizations of EuTPO-1and EuTPO-2,such as X-ray crystallography and photoluminescence spectroscopy,was performed to expatiate their structure and physicochemical properties.Both of them are constructed by dimers of the europium-oxygen subunit of [Eu_(2)O_(16)] and TPO molecule.Benefiting from high X-ray stopping attenuation and excellent luminescence efficiency,they emit sufficient luminescence when irradiated with Xrays.Meanwhile,they possess stable light outputs when exposed to high humidities and strong radiation dose,outperforming the commercial scintillator CsI:Tl.This result paves the way for developing new scintillator and enriches the compound of europium-bearing organic framework with X-ray scintillating luminescence.展开更多
As a cyan-emitting oxonitridosilicate phosphor,BaSi_(2)O_(2)N_(2):Eu^(2+)can be used as a competent cyan compensator to improve the color rendering index of white light-emitting diodes(WLEDs).However,low luminescence ...As a cyan-emitting oxonitridosilicate phosphor,BaSi_(2)O_(2)N_(2):Eu^(2+)can be used as a competent cyan compensator to improve the color rendering index of white light-emitting diodes(WLEDs).However,low luminescence efficiency and poor thermal stability of this type of phosphor seriously suppress its actual application in full-spectrum lighting.The replacements of Ba^(2+)by Lu^(3+)and Ba^(2+)-Si^(4+)by Lu^(3+)-Al^(3+)can greatly increase the luminescence intensity and improve the thermal stability at the same time.With Lu^(3+)doping,the internal quantum efficiencyηIQE Ba_(0.925)Si_(2)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+)is 24.08%higher than that of Ba_(0.97)Si_(2)O_(2)N_(2):0.03 Eu^(2+).After Al^(3+)co-doping,theηIQE is further increased by 10.31%compared to Ba_(0.925)Si_(2)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+).When the temperature rises to 473 K,the luminescence intensity of Ba_(0.925)Si_(2)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+)maintains 62.32%of that at room temperature,which increases by 17.35%in relative to the Ba_(0.97)Si_(2)O_(2)N_(2):0.03 Eu^(2+),while the luminescence intensity of Ba_(0.925)Si_(1.97)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+),0.03 Al^(3+)keeps 73.87%of the initial value,which increases by18.52%compared to Ba_(0.925)Si_(2)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+).The mechanisms for luminescence and thermal stability improvement are proposed.The Ba_(0.925)Si_(1.97)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+),0.03 Al^(3+)cyan phosphor,Y3 Al5 O12:Ce3+yellow phosphor and CaAlSiN3:Eu^(2+)red phosphor are mixed thoroughly and coated on a blue LED(450 nm)to assemble a WLED.The WLED demonstrates a color rendering index(Ra)of 97.1 at150 mA,and the R1-R15 values are all above 90.The results indicate that as an effective cyan compensator in WLED,the BaSi_(2)O_(2)N_(2):Eu^(2+),Lu^(3+),Al^(3+)phosphor has great application prospect in the field of full-spectrum lighting.展开更多
High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion(UC)nanocrystals(UCNC)like NaYF_(4):Yb,Er and first strategies were reported ...High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion(UC)nanocrystals(UCNC)like NaYF_(4):Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC.UC luminescence(UCL)is,however,controlled not only by dopant concentration,yet by an interplay of different parameters including size,crystal and shell quality,and excitation power density(P).Thus,identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy.Here,we quantify the dopant concentration dependence of the UCL quantum yield(ΦUC)of solid NaYF_(4):Yb,Er/NaYF_(4):Lu upconversion core/shell nanocrystals of varying Yb3+and Er3+concentrations(Yb3+series:20%‒98%Yb3+;2%Er3+;Er3+series:60%Yb3+;2%‒40%Er3+).To circumvent other luminescence quenching processes,an elaborate synthesis yielding OH-free UCNC with recordΦUC of~9%and~25 nm core particles with a thick surface shell were used.High Yb3+concentrations barely reduceΦUC from~9%(20%Yb3+)to~7%(98%Yb3+)for an Er3+concentration of 2%,thereby allowing to strongly increase the particle absorption cross section and UCNC brightness.Although an increased Er3+concentration reducesΦUC from~7%(2%Er3+)to 1%(40%)for 60%Yb3+.Nevertheless,at very high P(>1 MW/cm^(2))used for microscopic studies,highly Er3+-doped UCNC display a high brightness because of reduced saturation.These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials.展开更多
Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses. The lumines- cence of...Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses. The lumines- cence of transition 5D0 →7F2 (612 nm) is induced by two-photon absorption of hypersensitive transitions 7F0 →5D2 (465 nm) and 7F1 →5D1 (535 nm). Analysis results suggest that the two-photon excitation strength of these hypersensitive transitions is increased dramatically owing to the C3 symmetry of the coordination field.展开更多
In this paper, properties on pulsed radiation detections of ZnO:Ga crystal grew by a magnetron sputtering method were studied. The time response to pulsed laser, pulsed hard X rays and single α particles, the energy...In this paper, properties on pulsed radiation detections of ZnO:Ga crystal grew by a magnetron sputtering method were studied. The time response to pulsed laser, pulsed hard X rays and single α particles, the energy response to pulsed hard X ray, the scintillation efficiency to γ rays, the response to pulsed proton, and the relations of the light intensity varied with the proton energy were measured and analyzed in detail. Results show that the ZnO:Ga crystal has potential applications in the regime of pulse radiation detection.展开更多
文摘The hole injection,the radiative recombination and the device luminescent efficiencies of amorphous silicon carbide thin film p-i-n junction light emitting diodes are quantitatively calculated,and the effect of the carrier(especially the hole) injection and recombination processes on the device luminescent characteristics are revealed.Without considering the device junction temperature,it is found that the device luminescent efficiency mainly depends on the hole injection efficiency at low field and the hole radiative recombination efficiency at high field respectively.The theoretical analyses are in well agreement with the experimental results.
文摘The photoacoustic spectra of Eu ( benz)(3) (.) ( phen)(2) ( benz: benzoate, phen: phenanthroline) and Eu-0.(8)Ln(0.2)(benz)(3)(.)(phen)(2)(Ln(3+) : La3+ or Nd3+) were reported. The intermolecular energy transfer processes were studied from the point of the nonradiative transitions. Combined with the fluorescence spectroscopy, photoacoustic spectroscopy reflects the variation of the luminescence efficiencies of solid samples. The luminescence efficiency increases when La3+ is introduced, but it decreases greatly when Nd3+ is added, which is due to the difference of intermolecular energy transfer processes. The models of intramolecular and intermolecular energy transfer and relaxation processes were established.
基金Supported by the National Natural Science Foundation of China under Grant No 90201026, the National High Technology Research and Development Programme of China, the Special Funds for Major State Basic Research Project, and Post-doctoral Science Foundation of China.
文摘We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering processes may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.
基金973 Program,the National Natural Science Foundation of China,the Research Fund for the Doctoral Program of Higher Education of China,the Project of Jilin Province
文摘A novel organic fluorophor with high solid state luminescent efficiency based on 1,4-bis(2,2-di(pyridin-2-yl)- vinyl)benzene (BDP2VB) was designed and synthesized. It emits faintly in solution, but becomes a strong emitter in the aggregate state, demonstrating its aggregation induced emission (AIE) property. According to the crystal struc- ture analysis, J-type aggregation was formed in the packing mode of the molecule, which was demonstrated to be beneficial to gain high fluorescent quantum efficiency in solid state. Additionally, the emission color of BDP2VB can change dramatically in solid state as well as in solution by the protonation stimuli.
基金Project supported by National High Technology Research and Development Program of China,863 Program (2010AA03A407,2010AA03A408)the Foundation of Training Academic and Technical Header for Main Majors of Jiang xi of China (2007GG00800)
文摘Tb^3+ and Ce^3+ co-activated LiZnPO4 phosphors with high luminescence efficiency were synthesized by a high temperature solid-state reaction at 1000 ℃ for 3 h. The XRD patterns, photoluminescence spectra and SEM were recorded and the effects ofTb^3+and Ce^3+ concentration, sintering condition on the luminescent properties of as-synthesized phosphors were investigated. The emission spectra under ultraviolet (200-300 nm) radiation showed a dominant peak at 543 nm attributed to the ^5D4→^7F5 transition of Tb^3+, which was greatly enhanced by the co-doping of Ce^3+, indicating that there occurred an efficient non-radiative energy transfer from Ce^3+ to Th^3+. The optimal doping concentrations of Tb^3+ and Ce^3+ were determined to be 9% and 10%, respectively.
基金supported by the National Natural Science Foundation of China (No. 51473092)the Shanghai Rising-Star Program (No. 15QA1402500)
文摘Fabrication of efficient solid luminogens with tunable emission is both fundamentally significant and technically important. Herein, based on our previous strategy for the construction of efficient and multifunctional solid luminogens through the combination of diverse aggregation-induced emission (ALE) units with other functional moieties, a group of luminophores with electron donor-acceptor (D-A) structure and typical intramolecular charge transfer (ICT) characteristics, namely CZ-DCDPP, DPA-DCDPP and DBPA-DCDPP were synthesized and investigated. The presence of twisting and AlE-active 2,3- dicyano-S,6-diphenylpyrazine (DCDPP) moiety endows them highly emissive in the solid states, whereas the introduction of arylamines with varied electron-donating capacity and different conjugation render them with tunable solid emissions from green to red. While CZ-DCDPP and DPA-DCDPP solids exhibit distinct mechanochromism, both DPA-DCDPP and DBPA-DCDPP solids can generate efficient red emission. Owing to their high efficiency, remarkable thermal and morphological stabilities and moreover red emission, they are promising for diverse optoelectronic and biological applications.
基金Project supported by the National Key R&D Program of China(2021YFB3200400)。
文摘Two europium-bearing organic frameworks,termed as EuTPO-1 and EuTPO-2(H_(3)TPO=tris(4-carboxylphenyI)-phosphineoxide),are reported in this work.A series of characterizations of EuTPO-1and EuTPO-2,such as X-ray crystallography and photoluminescence spectroscopy,was performed to expatiate their structure and physicochemical properties.Both of them are constructed by dimers of the europium-oxygen subunit of [Eu_(2)O_(16)] and TPO molecule.Benefiting from high X-ray stopping attenuation and excellent luminescence efficiency,they emit sufficient luminescence when irradiated with Xrays.Meanwhile,they possess stable light outputs when exposed to high humidities and strong radiation dose,outperforming the commercial scintillator CsI:Tl.This result paves the way for developing new scintillator and enriches the compound of europium-bearing organic framework with X-ray scintillating luminescence.
基金Project supported by the National Natural Science Foundation of China(51962005)the Cultivation Project of the State Key Laboratory of Green Development and High-value Utilization of Ionic Rare Earth Resources in Jiangxi Province(20194AFD44003)+3 种基金the Key Research and Development Plan Project of Jiangxi Province(20192ACB50021)Natural Science Foundation of Jiangxi Province(20192BAB206010)Key Special Project of Science and Technology to Help Economy in Jiangxi Province([2020]87)Youth Jinggang Scholars Program in Jiangxi Province([2018]82)。
文摘As a cyan-emitting oxonitridosilicate phosphor,BaSi_(2)O_(2)N_(2):Eu^(2+)can be used as a competent cyan compensator to improve the color rendering index of white light-emitting diodes(WLEDs).However,low luminescence efficiency and poor thermal stability of this type of phosphor seriously suppress its actual application in full-spectrum lighting.The replacements of Ba^(2+)by Lu^(3+)and Ba^(2+)-Si^(4+)by Lu^(3+)-Al^(3+)can greatly increase the luminescence intensity and improve the thermal stability at the same time.With Lu^(3+)doping,the internal quantum efficiencyηIQE Ba_(0.925)Si_(2)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+)is 24.08%higher than that of Ba_(0.97)Si_(2)O_(2)N_(2):0.03 Eu^(2+).After Al^(3+)co-doping,theηIQE is further increased by 10.31%compared to Ba_(0.925)Si_(2)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+).When the temperature rises to 473 K,the luminescence intensity of Ba_(0.925)Si_(2)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+)maintains 62.32%of that at room temperature,which increases by 17.35%in relative to the Ba_(0.97)Si_(2)O_(2)N_(2):0.03 Eu^(2+),while the luminescence intensity of Ba_(0.925)Si_(1.97)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+),0.03 Al^(3+)keeps 73.87%of the initial value,which increases by18.52%compared to Ba_(0.925)Si_(2)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+).The mechanisms for luminescence and thermal stability improvement are proposed.The Ba_(0.925)Si_(1.97)O_(2)N_(2):0.03 Eu^(2+),0.045 Lu^(3+),0.03 Al^(3+)cyan phosphor,Y3 Al5 O12:Ce3+yellow phosphor and CaAlSiN3:Eu^(2+)red phosphor are mixed thoroughly and coated on a blue LED(450 nm)to assemble a WLED.The WLED demonstrates a color rendering index(Ra)of 97.1 at150 mA,and the R1-R15 values are all above 90.The results indicate that as an effective cyan compensator in WLED,the BaSi_(2)O_(2)N_(2):Eu^(2+),Lu^(3+),Al^(3+)phosphor has great application prospect in the field of full-spectrum lighting.
基金the German Science Foundation DFG(grants RE 1203/18-1 and HA 1649/7-1)the EU(COST 1403)for financial support.
文摘High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion(UC)nanocrystals(UCNC)like NaYF_(4):Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC.UC luminescence(UCL)is,however,controlled not only by dopant concentration,yet by an interplay of different parameters including size,crystal and shell quality,and excitation power density(P).Thus,identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy.Here,we quantify the dopant concentration dependence of the UCL quantum yield(ΦUC)of solid NaYF_(4):Yb,Er/NaYF_(4):Lu upconversion core/shell nanocrystals of varying Yb3+and Er3+concentrations(Yb3+series:20%‒98%Yb3+;2%Er3+;Er3+series:60%Yb3+;2%‒40%Er3+).To circumvent other luminescence quenching processes,an elaborate synthesis yielding OH-free UCNC with recordΦUC of~9%and~25 nm core particles with a thick surface shell were used.High Yb3+concentrations barely reduceΦUC from~9%(20%Yb3+)to~7%(98%Yb3+)for an Er3+concentration of 2%,thereby allowing to strongly increase the particle absorption cross section and UCNC brightness.Although an increased Er3+concentration reducesΦUC from~7%(2%Er3+)to 1%(40%)for 60%Yb3+.Nevertheless,at very high P(>1 MW/cm^(2))used for microscopic studies,highly Er3+-doped UCNC display a high brightness because of reduced saturation.These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials.
基金supported by the National Natural Science Foundation of China (No. 20903120)the Project of shandong Provincial Higher Educational Science and Technology Program (No. J10LA10)the Doctoral Research Foundation of Qufu Normal University
文摘Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses. The lumines- cence of transition 5D0 →7F2 (612 nm) is induced by two-photon absorption of hypersensitive transitions 7F0 →5D2 (465 nm) and 7F1 →5D1 (535 nm). Analysis results suggest that the two-photon excitation strength of these hypersensitive transitions is increased dramatically owing to the C3 symmetry of the coordination field.
文摘In this paper, properties on pulsed radiation detections of ZnO:Ga crystal grew by a magnetron sputtering method were studied. The time response to pulsed laser, pulsed hard X rays and single α particles, the energy response to pulsed hard X ray, the scintillation efficiency to γ rays, the response to pulsed proton, and the relations of the light intensity varied with the proton energy were measured and analyzed in detail. Results show that the ZnO:Ga crystal has potential applications in the regime of pulse radiation detection.