Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery ...Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.展开更多
Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic metho...Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.展开更多
A kinematic statistical method is proposed to determine the position for Chang'E-3(CE-3) lunar lander.This method uses both ranging and VLBI measurements to the lander for a continuous arc,combing with precise kno...A kinematic statistical method is proposed to determine the position for Chang'E-3(CE-3) lunar lander.This method uses both ranging and VLBI measurements to the lander for a continuous arc,combing with precise knowledge about the motion of the moon as provided by planetary ephemeris,to estimate the lander's position on the lunar surface with high accuracy.Accuracy analyses are carried out with simulation data using the software developed at Shanghai Astronomical Observatory in this study to show that measurement errors will dominate the position accuracy.Application of lunar digital elevation model(DEM) as constraints in the lander positioning is also analyzed.Simulations show that combing range/doppler and VLBI data,single epoch positioning accuracy is at several hundred meters level,but with ten minutes data accumulation positioning accuracy is able to be achieved with several meters.Analysis also shows that the information given by DEM can provide constraints in positioning,when DEM data reduce a 3-dimensional positioning problem to 2-dimensional.Considering the Sinus Iridum,CE-3 lander's planned landing area,has been observed with dedicated details during the CE-1 and CE-2 missions,and its regional DEM model accuracy may be higher than global models,which will certainly support CE-3's lander positioning.展开更多
The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number o...The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultravi- olet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar sub- surface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing pro- cedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.展开更多
Lunar dust is considered to be one of the top challenges for enabling humans to have extended stays on the moon.Human activities such as module landings and launches,walking,rover operation and construction activities...Lunar dust is considered to be one of the top challenges for enabling humans to have extended stays on the moon.Human activities such as module landings and launches,walking,rover operation and construction activities will inevitably produce a significant amount of dust.Therefore,it is important to estimate the potential range and intensity of dust deposition caused by these activities to minimize dust accumulation over time and for maintenance planning and execution.A modular model that correlates the dust deposition distribution with initial mean dust particle velocity,its mean ejected angle and the total amount of ejected mass is developed for an elementary mechanical movement.This modular model is further employed to form a modeling framework to estimate dust deposition of a trajectory based activity of similar repeated movements such as the landing process of a lander,walking and rover operation.The model forms a unified modeling framework for different trajectory-based activities and is shown to predict consistent and physically meaningful ranges and intensities of dust deposition provided reliable data to calibrate the model parameters.展开更多
基金HI-tech Research and Development Program of China
文摘Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.
文摘Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.
基金supported by the National Natural Science Foundation of China(11073047,10703011)Science and Technology Commission of Shanghai(12DZ2273300)
文摘A kinematic statistical method is proposed to determine the position for Chang'E-3(CE-3) lunar lander.This method uses both ranging and VLBI measurements to the lander for a continuous arc,combing with precise knowledge about the motion of the moon as provided by planetary ephemeris,to estimate the lander's position on the lunar surface with high accuracy.Accuracy analyses are carried out with simulation data using the software developed at Shanghai Astronomical Observatory in this study to show that measurement errors will dominate the position accuracy.Application of lunar digital elevation model(DEM) as constraints in the lander positioning is also analyzed.Simulations show that combing range/doppler and VLBI data,single epoch positioning accuracy is at several hundred meters level,but with ten minutes data accumulation positioning accuracy is able to be achieved with several meters.Analysis also shows that the information given by DEM can provide constraints in positioning,when DEM data reduce a 3-dimensional positioning problem to 2-dimensional.Considering the Sinus Iridum,CE-3 lander's planned landing area,has been observed with dedicated details during the CE-1 and CE-2 missions,and its regional DEM model accuracy may be higher than global models,which will certainly support CE-3's lander positioning.
文摘The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultravi- olet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar sub- surface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing pro- cedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.
文摘Lunar dust is considered to be one of the top challenges for enabling humans to have extended stays on the moon.Human activities such as module landings and launches,walking,rover operation and construction activities will inevitably produce a significant amount of dust.Therefore,it is important to estimate the potential range and intensity of dust deposition caused by these activities to minimize dust accumulation over time and for maintenance planning and execution.A modular model that correlates the dust deposition distribution with initial mean dust particle velocity,its mean ejected angle and the total amount of ejected mass is developed for an elementary mechanical movement.This modular model is further employed to form a modeling framework to estimate dust deposition of a trajectory based activity of similar repeated movements such as the landing process of a lander,walking and rover operation.The model forms a unified modeling framework for different trajectory-based activities and is shown to predict consistent and physically meaningful ranges and intensities of dust deposition provided reliable data to calibrate the model parameters.