Celestial navigation system is an important autonomous navigation system widely used for deep space exploration missions, in which extended Kalman filter and the measurement of angle between celestial bodies are used ...Celestial navigation system is an important autonomous navigation system widely used for deep space exploration missions, in which extended Kalman filter and the measurement of angle between celestial bodies are used to estimate the position and velocity of explorer. In a conventional cartesian coordinate, this navigation system can not be used to achieve accurate determination of position for linearization errors of nonlinear spacecraft motion equation. A new autonomous celestial navigation method has been proposed for lunar satellite using classical orbital parameters. The error of linearizafion is reduced because orbit parameters change much more slowly than the position and velocity used in the cartesian coordinate. Simulations were made with both the cartesiane system and a system based on classical orbital parameters using extended Kalman filter under the same conditions for comparison. The results of comparison demonstrated high precision position determination of lunar satellite using this new method.展开更多
The goals of engineering and scientific missions for Chang'E-2 lunar satellite require high detection sensitivity and large imaging dynamic range for the onboard CCD cameras. The TDI CCD image sensor was adopted for ...The goals of engineering and scientific missions for Chang'E-2 lunar satellite require high detection sensitivity and large imaging dynamic range for the onboard CCD cameras. The TDI CCD image sensor was adopted for the two linear CCD stereo cameras for the first time in the lunar reconnaissance of the world. The design argumentation is described in this paper. The analysis shows that the imagers meet the mission requirements. The satellite was launched on 1 October 2010 at zero window. The cameras obtained images of 7 m resolution on the 100 km orbit for the first time on 24 October 2010, and operated once again on 27 October 2010 to take stereo images of the Sinus Iridum with the resolution better than 1.5 m. On the near-moon-arc of 15 kmxl00 km elliptical orbit, the images are very clear and rich of grey scales, indicating successful completion of the Chang'E-2 engineering mission. At the present the cameras are acquiring the full lunar surface stereo images with 7 m resolution on the 100 km circular orbit to complete their scientific mission.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60174031)China National Space Administration
文摘Celestial navigation system is an important autonomous navigation system widely used for deep space exploration missions, in which extended Kalman filter and the measurement of angle between celestial bodies are used to estimate the position and velocity of explorer. In a conventional cartesian coordinate, this navigation system can not be used to achieve accurate determination of position for linearization errors of nonlinear spacecraft motion equation. A new autonomous celestial navigation method has been proposed for lunar satellite using classical orbital parameters. The error of linearizafion is reduced because orbit parameters change much more slowly than the position and velocity used in the cartesian coordinate. Simulations were made with both the cartesiane system and a system based on classical orbital parameters using extended Kalman filter under the same conditions for comparison. The results of comparison demonstrated high precision position determination of lunar satellite using this new method.
文摘The goals of engineering and scientific missions for Chang'E-2 lunar satellite require high detection sensitivity and large imaging dynamic range for the onboard CCD cameras. The TDI CCD image sensor was adopted for the two linear CCD stereo cameras for the first time in the lunar reconnaissance of the world. The design argumentation is described in this paper. The analysis shows that the imagers meet the mission requirements. The satellite was launched on 1 October 2010 at zero window. The cameras obtained images of 7 m resolution on the 100 km orbit for the first time on 24 October 2010, and operated once again on 27 October 2010 to take stereo images of the Sinus Iridum with the resolution better than 1.5 m. On the near-moon-arc of 15 kmxl00 km elliptical orbit, the images are very clear and rich of grey scales, indicating successful completion of the Chang'E-2 engineering mission. At the present the cameras are acquiring the full lunar surface stereo images with 7 m resolution on the 100 km circular orbit to complete their scientific mission.