Objective:To analyze the clinical efficacy,progression-free survival,and safety of anlotinib in the treatment of advanced lung cancer.Methods:A retrospective analysis was conducted using data from 60 patients with adv...Objective:To analyze the clinical efficacy,progression-free survival,and safety of anlotinib in the treatment of advanced lung cancer.Methods:A retrospective analysis was conducted using data from 60 patients with advanced lung cancer treated with anlotinib from May 2019 to May 2021.This analysis aimed to comprehensively evaluate the clinical efficacy,progression-free survival,and adverse reactions of anlotinib.Results:The median progression-free survival(PFS)for the 60 patients was 5.79 months,with an overall response rate(ORR)of 21%and a disease control rate(DCR)of 90%.In the first-line group,the median PFS was 6.20 months,ORR was 76.92%,and DCR was 84.61%.The second-line group showed a median PFS of 6.30 months,ORR of 28.57%,and DCR of 90.48%.In the third-line group,the median PFS was 5.34 months,ORR was 19.23%,and DCR was 92.30%.The single-agent group exhibited a median PFS of 5.09 months,ORR of 23.33%,and DCR of 76.67%.In the combination group,the median PFS was 6.53 months,ORR was 46.67%,and DCR was 100%.The combination group demonstrated a significantly higher medication effect than the single-drug group,and adverse drug reactions were mostly grade 1-2.Conclusion:Anlotinib exhibits a better disease control rate and survival benefit in the treatment of advanced lung cancer.The combination effect is superior to monotherapy,with relatively controllable adverse effects.展开更多
Drug-induced interstitial lung disease(DILD)is the most common pulmonary adverse event of anticancer drugs.In recent years,the incidence of anticancer DILD has gradually increased with the rapid development of novel a...Drug-induced interstitial lung disease(DILD)is the most common pulmonary adverse event of anticancer drugs.In recent years,the incidence of anticancer DILD has gradually increased with the rapid development of novel anticancer agents.Due to the diverse clinical manifestations and the lack of specific diagnostic criteria,DILD is difficult to diagnose and may even become fatal if not treated properly.Herein,a multidisciplinary group of experts from oncology,respiratory,imaging,pharmacology,pathology,and radiology departments in China has reached the“expert consensus on the diagnosis and treatment of anticancer DILD”after several rounds of a comprehensive investigation.This consensus aims to improve the awareness of clinicians and provide recommendations for the early screening,diagnosis,and treatment of anticancer DILD.This consensus also emphasizes the importance of multidisciplinary collaboration while managing DILD.展开更多
BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung can...BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung cancer(NSCLC).CASE SUMMARY A 67-year-old female patient in advanced lung adenocarcinoma suffered from drug resistance after EGFR-TKIs treatment.Secondary pathological tissue biopsy confirmed squamous cell carcinoma(SCC)transformation.Patients inevitably encountered drug resistance issues after receiving EGFR-TKIs treatment for a certain period of time,while EGFR-TKIs can significantly improve the survival of patients with EGFR-sensitive mutations in NSCLC.Notably,EGFR-TKIs resistance includes primary and acquired.Pathological transformation is one of the mechanisms of acquired resistance in EGFR-TKIs,with SCC transformation being relatively rare.Our results provide more detailed results of the patient’s diagnosis and treatment process on SCC transformation after EGFR-TKIs treatment for lung adenocarcinoma.CONCLUSION Squamous cell carcinoma transformation is one of the acquired resistance mechanisms of EGFR-TKIs in advanced lung adenocarcinoma with EGFR mutations.展开更多
The introduction of the academic ideas such as“the treatment of tumor using Wind-dispelling drugs”and“the treatment of lung cancer should be combined with the governance of Wind”provided new ideas for the treatmen...The introduction of the academic ideas such as“the treatment of tumor using Wind-dispelling drugs”and“the treatment of lung cancer should be combined with the governance of Wind”provided new ideas for the treatment of lung cancer.This article summarized the current research progress on anti-lung cancer effects by the two angles of single wind-dispelling drugs and formulas including wind-dispelling drugs.We also put forward the defects of the current research in order to further improve wind-dispelling drugs study and lay the foundation for the treatment of lung cancer.展开更多
Advanced LUAD shows limited response to treatment including immune therapy.With the development of sequencing omics,it is urgent to combine high-throughput multi-omics data to identify new immune checkpoint therapeuti...Advanced LUAD shows limited response to treatment including immune therapy.With the development of sequencing omics,it is urgent to combine high-throughput multi-omics data to identify new immune checkpoint therapeutic response markers.Using GSE72094(n=386)and GSE31210(n=226)gene expression profile data in the GEO database,we identified genes associated with lung adenocarcinoma(LUAD)death using tools such as“edgeR”and“maftools”and visualized the characteristics of these genes using the“circlize”R package.We constructed a prognostic model based on death-related genes and optimized the model using LASSO-Cox regression methods.By calculating the cell death index(CDI)of each individual,we divided LUAD patients into high and low CDI groups and examined the relationship between CDI and overall survival time by principal component analysis(PCA)and Kaplan-Meier analysis.We also used the“ConsensusClusterPlus”tool for unsupervised clustering of LUAD subtypes based on model genes.In addition,we collected data on the expression of immunomodulatory genes and model genes for each cohort and performed tumor microenvironment analyses.We also used the TIDE algorithm to predict immunotherapy responses in the CDI cohort.Finally,we studied the effect of PRKCD on the proliferation and migration of LUAD cells through cell culture experiments.The study utilized the TCGA-LUAD cohort(n=493)and identified 2,901 genes that are differentially expressed in patients with LUAD.Through KEGG and GO enrichment analysis,these genes were found to be involved in a wide range of biological pathways.The study also used univariate Cox regression models and LASSO regression analyses to identify 17 candidate genes that were best associated with mortality prognostic risk scores.By comparing the overall survival(OS)outcomes of patients with different CDI values,it was found that increased CDI levels were significantly associated with lower OS rates.In addition,the study used unsupervised cluster analysis to divide 115 LUAD patients into two distinct clusters with significant differences in OS timing.Finally,a prognostic indicator called CDI was established and its feasibility as an independent prognostic indicator was evaluated by Cox proportional risk regression analysis.The immunotherapy efficacy was more sensitive in the group with high expression of programmed cell death models.Relationship between programmed cell death(PCD)signature models and drug reactivity.After evaluating the median inhibitory concentration(IC50)of various drugs in LUAD samples,statistically significant differences in IC50 values were found in cohorts with high and low CDI status.Specifically,Gefitinib and Lapatinib had higher IC50 values in the high-CDI cohort,while Olaparib,Oxaliplatin,SB216763,and Axitinib had lower values.These results suggest that individuals with high CDI levels are sensitive to tyrosine kinase inhibitors and may be resistant to conventional chemotherapy.Therefore,this study constructed a gene model that can evaluate patient immunotherapy by using programmed cell death-related genes based on muti-omics.The CDI index composed of these programmed cell death-related genes reveals the heterogeneity of lung adenocarcinoma tumors and serves as a prognostic indicator for patients.展开更多
Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide.Therapeutic failure in lung cancer(LUAD)is heavily influenced by drug resistance.This challenge stems from the diverse...Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide.Therapeutic failure in lung cancer(LUAD)is heavily influenced by drug resistance.This challenge stems from the diverse cell populations within the tumor,each having unique genetic,epigenetic,and phenotypic profiles.Such variations lead to varied therapeutic responses,thereby contributing to tumor relapse and disease progression.Methods:The Genomics of Drug Sensitivity in Cancer(GDSC)database was used in this investigation to obtain the mRNA expression dataset,genomic mutation profile,and drug sensitivity information of NSCLS.Machine Learning(ML)methods,including Random Forest(RF),Artificial Neurol Network(ANN),and Support Vector Machine(SVM),were used to predict the response status of each compound based on the mRNA and mutation characteristics determined using statistical methods.The most suitable method for each drug was proposed by comparing the prediction accuracy of different ML methods,and the selected mRNA and mutation characteristics were identified as molecular features for the drug-responsive cancer subtype.Finally,the prognostic influence of molecular features on the mutational subtype of LUAD in publicly available datasets.Results:Our analyses yielded 1,564 gene features and 45 mutational features for 46 drugs.Applying the ML approach to predict the drug response for each medication revealed an upstanding performance for SVM in predicting Afuresertib drug response(area under the curve[AUC]0.875)using CIT,GAS2L3,STAG3L3,ATP2B4-mut,and IL15RA-mut as molecular features.Furthermore,the ANN algorithm using 9 mRNA characteristics demonstrated the highest prediction performance(AUC 0.780)in Gefitinib with CCL23-mut.Conclusion:This work extensively investigated the mRNA and mutation signatures associated with drug response in LUAD using a machine-learning approach and proposed a priority algorithm to predict drug response for different drugs.展开更多
In this editorial we comment on the article by Ji et al.We focus specifically on the EGFR tyrosine kinase inhibitor(EGFR-TKI)treatment and the development of drug resistance to EGFR-TKIs.
Lung cancer is the leading cause of cancer-related deaths globally.In recent years,with the widespread use of genetic testing,epidermal growth factor receptor–tyrosine kinase inhibitor(EGFR-TKI)–targeted drugs have ...Lung cancer is the leading cause of cancer-related deaths globally.In recent years,with the widespread use of genetic testing,epidermal growth factor receptor–tyrosine kinase inhibitor(EGFR-TKI)–targeted drugs have been efficacious to patients with lung adenocarcinoma exhibiting EGFR mutations.However,resistance to treatment is inevitable and eventually leads to tumor progression,recurrence,and reduction in the overall treatment efficacy.Lung cancer stem cells play a crucial role in the development of resistance toward EGFR-TKI–targeted therapy for lung adenocarcinoma.Lung cancer stem cells possess self-renewal,multilineage differentiation,and unlimited proliferation capabilities,which efficiently contribute to tumor formation and ultimately lead to tumor recurrence andmetastasis.In this study,we evaluated the origin,markers,stemness index,relevant classic studies,resistance mechanisms,related signaling pathways,and strategies for reversing lung cancer stem cell resistance to EGFR-TKIs to provide new insights on delaying or reducing resistance and to improve the treatment efficacy of patients with EGFR-mutated lung adenocarcinoma in the future.展开更多
Previous studies have shown that PRDX5 and Nrf2 are antioxidant proteins related to abnormal reactive oxidative species(ROS).PRDX5 and Nrf2 play a critical role in the progression of inflammations and tumors.The combin...Previous studies have shown that PRDX5 and Nrf2 are antioxidant proteins related to abnormal reactive oxidative species(ROS).PRDX5 and Nrf2 play a critical role in the progression of inflammations and tumors.The combination of PRDX5 and Nrf2 was examined by Co-immunoprecipitation,western blotting and Immunohistochemistry.H2O2 was applied to affect the production of ROS and induced multi-resistant protein 1(MRP1)expression in NSCLC cells.The zebrafish models mainly investigated the synergistic effects of PRDX5 and Nrf2 on lung cancer drug resistance under oxidative stress.We showed that PRDX5 and Nrf2 form a complex and significantly increase the NSCLC tissues compared to adjacent tissues.The oxidative stress improved the combination of PRDX5 and Nrf2.We demonstrated that the synergy between PRDX5 and Nrf2 is positively related to the proliferation and drug resistance of NSCLC cells in the zebrafish models.In conclusion,our data indicated that PRDX5 could bind to Nrf2 and has a synergistic effect with Nrf2.Meanwhile,in the zebrafish models,PRDX5 and Nrf2 have significant regulatory impacts on lung cancer progression and drug resistance activities under oxidative stress.展开更多
Amyloidosis is a rare spectrum of disease which involves deposition of misfolded extracellular proteins (amyloids) in various body organs leading to progressive organ dysfunction. Clinical presentation can be variable...Amyloidosis is a rare spectrum of disease which involves deposition of misfolded extracellular proteins (amyloids) in various body organs leading to progressive organ dysfunction. Clinical presentation can be variable depending on the organ involved and type of protein. Amyloidosis can be classified based on quantity, type, and location of these proteins. Amyloid light-chain amyloidosis develops in the bone marrow, producing abnormal forms of light-chain proteins, which cannot be broken down. These proteins transform into amyloid fibrils and form amyloid deposits in different organs. Pulmonary amyloidosis is uncommonly diagnosed since it is rarely symptomatic. Diagnosis of pulmonary amyloidosis is usually made in the setting of systemic amyloidosis;however, it may present as localised pulmonary disease. Localized pulmonary Amyloidosis can present as nodular, cystic, or tracheobronchial amyloidosis. Depending on the degree of the interstitial involvement, it may affect alveolar gas exchange and cause respiratory symptoms. This is a case of a 47-year-old female with background history of interstitial lung disease presenting with progressive shortness of breath. Computed tomography scan revealed bilateral pulmonary nodules. The patient was referred to our thoracic surgery team with the suspicion of bronchogenic malignancy with metastasis. Diagnostic video assisted wedge resection was performed for this patient, and histology confirmed pulmonary amyloidosis of nodular type. Amyloid deposition simulates both inflammatory and neoplastic conditions. Definitive diagnosis requires biopsy confirmation therefore early detection and commencing the patient on appropriate treatment pathway may help in symptomatic relief and better outcome.展开更多
Alectinib is a selective Anaplastic Lymphoma Kinase (ALK) tyrosine kinase inhibitor used as standard therapy for ALK-rearranged lung adenocarcinoma. Hemolytic anemia is considered a rare but significant adverse event ...Alectinib is a selective Anaplastic Lymphoma Kinase (ALK) tyrosine kinase inhibitor used as standard therapy for ALK-rearranged lung adenocarcinoma. Hemolytic anemia is considered a rare but significant adverse event of alectinib. Here, we report the case of a 78-year-old female with advanced ALK rearrangement-positive lung adenocarcinoma who developed grade 4 drug-induced hemolytic anemia after receiving alectinib as first-line therapy. We discontinued alectinib treatment and switched to brigatinib. As a result, anemia improved without recurrence of lung adenocarcinoma over one year.展开更多
Objective: To investigate the co-expression of drug resistance- and apoptosis-related genes of cisplatin (CDDP)-selected lung adenocarcinoma cell line A 549 DDP for compared to the parental cell line A549, and reverse...Objective: To investigate the co-expression of drug resistance- and apoptosis-related genes of cisplatin (CDDP)-selected lung adenocarcinoma cell line A 549 DDP for compared to the parental cell line A549, and reverse of drug resistance by antisense s-oligodeoxynucleotides (S-ODNs) of differentially expressed genes. Methods: Sense and antisense S-ODN were transferred into A 549 DDP cells by lipofectin. The expression of drug resistance and apoptosis related genes was examined by RT-PCR, immunocytochemistry and flow cytometry, respectively. Apoptostic cells were identified by DNA electrophoresis and terminal deoxynucleotidyl transferase (TdT)-mediated biotin dUTP nick end-labeling(TUNEL). Drug resistance of tumor cells was detected by a cell viability (MTT) assay. Results: The expression of bcl-2 was positive and that of multidrug resistance-associated protein (MRP) at mRNA and protein level was increased in A 549 DDP compared to A549 cells. MDR1, c-myc and topoisomeras II (TOPO II) were similarly co-expressed in two cell lines. Both cell lines were negative for c-erbB-2 expression. In A 549 DDP cells, the expression of bcl-2 and MRP was significantly inhibited by their respective antisense S-ODNs. Antisense S-ODNs could also decrease significantly drug resistance of A 549 DDP cells to CDDP by promoting cell apoptosis. Conclusion: Both intrinsic and acquired drug resistance were involved in co-expression of multiple MDR-related genes in lung adenocarcinoma. Cooperation of bcl-2 and MRP genes appeared to play an important action to confer the resistance of A 549 DDP cells to CDDP. Their antisense S-ODNs are responsible for the decrease of drug resistance of this cell line by promoting apoptosis.展开更多
To approach the mechanism of lipopolysaccharide (LPS) in causing acute lung injury (ALI) and the protective effect of rhubarb and dexamethasone, lung specimens were examined with macroscopy, microscopy, electron micro...To approach the mechanism of lipopolysaccharide (LPS) in causing acute lung injury (ALI) and the protective effect of rhubarb and dexamethasone, lung specimens were examined with macroscopy, microscopy, electron microscopy and the biological markers of ALI including lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary capillary permeability and pulmonary alveolar permeability index were observed. The mechanism of the ALI is mainly due to direct injury of alveolar epithelium and pulmonary vascular endothelium. Rhubarb and dexamethasone could significantly reduce the edema of the lung tissue, decrease the red blood cell exudation, neutrophil infiltration and plasma protein exudation in the alveoli and all the biological markers in comparison with the ALI model rats, indicating they have protective action on vascular endothelium and alveolar epithelium.展开更多
Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell...Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell line WI-38, lung adenocarcinoma cell line SPCA-1 and its drug-resistant cells induced by different concentrations of doxorubicin were treated with restriction endonuclease Eco47III. The methylation status of MRP was examined by PCR, and the expressions of its mRNA and protein were evaluated by in situ hybridization and immunohistochemistry. Results: MRP gene promoter region of WI-38 cells was in hypermethylation status, but the promoter region of MRP in SPCA-1 cells and their resistant derivatives induced by different concentrations of doxorubicin were in hypomethylation status. There were significant differences in the expression of MRP mRNA among WI-38 cell line, SPCA-1 cells and their drug-resistant derivatives induced by different concentration of doxorubicin. Consistently, MRP immunostaining presented similar significant differences. Conclusion: The promoter region of MRP in SPCA-1 lung adenocarcinoma cells was in hypomethylation status. The hypomethylation status of 5' regulatory region of MRP promoter is an important structural basis that can increase the activity of transcription and results in the development of drug resistance in lung cancer.展开更多
Objective: To study on the effect of MRP gene overexpression on prognosis of patients with non-small lung cancer (NSCLC). Methods: Paraffin-embedded tissues from 47 cases of NSCLC who had undergone radical tumor rese...Objective: To study on the effect of MRP gene overexpression on prognosis of patients with non-small lung cancer (NSCLC). Methods: Paraffin-embedded tissues from 47 cases of NSCLC who had undergone radical tumor resection were examined for expression of MRP gene mRNA by in situ hybridization using labelled digoxigenin probes combined with immunohistochemistry. All the patients were retrospectively followed-up. Results: All of the 47 lung cancer specimens were found to have overexpression of MRP gene mRNA. It was significantly correlated with patients' survival time, response to chemotherapy, recurrence or metastases after surgery, but was not correlated with histology, tumor size, node status, TNM stage, degree of differentiation, age and sex. Conclusion: Overexpression of MRP gene is a marker of prognostic significance in patients with NSCLC.展开更多
In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL)...In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL),5-fluorouracil(F),and oxaliplatin(OX)(FOLFOX)is routinely employed to treat several types of solid tumours in various tissues.However,F is characterized by large interpatient variability with respect to plasma concentration,which necessitates close monitoring during treatments using of this compound.Since plasma drug concentrations often do not reflect tissue drug concentrations,it is essential to utilize sample-preparation methods specifically suited to monitoring drug levels in target organs.In this work,in vivo solid-phase microextraction(in vivo SPME)is proposed as an effective tool for quantitative therapeutic drug monitoring of FOLFOX in porcine lungs during pre-clinical IVLP and intravenous(IV)trials.The concomitant extraction of other endogenous and exogenous small molecules from the lung and their detection via liquid chromatography coupled to high resolution mass spectrometry(LC-HRMS)enabled an assessment of FOLFOX's impact on the metabolomic profile of the lung and revealed the metabolic pathways associated with the route of administration(IVLP vs.IV)and the therapy itself.This study also shows that the immediate instrumental analysis of metabolomic samples is ideal,as long-term storage at80℃ results in changes in the metabolite content in the sample extracts.展开更多
It is the habit of some drug consumers to dissolve the powder of crushed pills, intended for oral use, in water and inject this solution intravenously. Insoluble particles than obstruct pulmonary vessels causing micro...It is the habit of some drug consumers to dissolve the powder of crushed pills, intended for oral use, in water and inject this solution intravenously. Insoluble particles than obstruct pulmonary vessels causing microscopic pulmonary emboli. These foreign bodies migrate and penetrate into the perivascular space and interstitium, resulting in chronic inflammation and foreign body giant cell reaction. As a result of this a granulomatous interstitial fibrosis can develop, which has also been described as pulmonary talcosis. We are reporting the case of a 22 year old male with a history of long-term intravenous drug abuse. He presented to our hospital complaining of dyspnoea, cough and generalized weakness. We describe an extensive diagnostic process concluded by an open lung biopsy establishing a definitive diagnosis of this rare granulomatous lung disease. This case underlines the importance of a thorough diagnostic work up and the pathogenic potential of foreign material reaching the lung via blood circulation in amongst the differential diagnoses of interstitial lung diseases, especially occurring in this group of patients.展开更多
There is a pressing need for effective therapeutics for coronavirus disease 2019(COVID-19),the respiratory disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus.The process of drug develop...There is a pressing need for effective therapeutics for coronavirus disease 2019(COVID-19),the respiratory disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus.The process of drug development is a costly and meticulously paced process,where progress is often hindered by the failure of initially promising leads.To aid this chal-lenge,in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening,thereby saving valuable time and resources during a pandemic crisis.The SARS-CoV-2 virus attacks the lung,an organ where the unique three-dimensional(3D)structure of its functional units is critical for proper respiratory function.The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types.Current model systems include Transwell,organoid and organ-on-a-chip or microphysiological systems(MPSs).We review models that have direct relevance toward modeling the pathology of COVID-19,including the processes of inflammation,edema,coagulation,as well as lung immune function.We also consider the practical issues that may influence the design and fabrication of MPS.The role of lung MPS is addressed in the context of multi-organ models,and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.展开更多
47 senile non-parvicellular lung cancer patients at stage Ⅲ or Ⅳ were randomly divided into a treatment group (26 cases) treated by radiotherapy plus traditional Chinese medicine (TCM) and a control group (21 cases)...47 senile non-parvicellular lung cancer patients at stage Ⅲ or Ⅳ were randomly divided into a treatment group (26 cases) treated by radiotherapy plus traditional Chinese medicine (TCM) and a control group (21 cases) treated only by radiotherapy for observation of the therapeutic effects.The patients in the treatment group orally took Chinese medicine during and after the radiotherapy.There was no obvious difference in short-term therapeutic effects between the two groups,but the long-term curative effects in the treatment group was obviously superior to that in the control group (P<0.05 or P<0.01).Conclusion:radiotherapy plus TCM can prolong the survival period for senile non-parvicellular lung cancer patients.展开更多
Objective: Recombinant human Endostatin (rh-Endostatin, YH-16) can reverse cisplatin resistance in A549/DDP cells. However, the possible effect of rh-Endostatin in reversing DDP-resistance in A549/DDP cells and the...Objective: Recombinant human Endostatin (rh-Endostatin, YH-16) can reverse cisplatin resistance in A549/DDP cells. However, the possible effect of rh-Endostatin in reversing DDP-resistance in A549/DDP cells and the mechanism are needed to be investigated. Methods: Lung adenocarcinoma cell line A549 and its DDP-resistant cell line A549/DDP were treated with DDP and/or recombinant human Endostatin. Difference in drug resistance was analyzed between different regi- mens and between different cell lines after a 72 h-treatment in vitro. And below the non-cytotoxic concentration of rh-End- ostatin, the possibility of rh-Endostatin in reversing DDP-resistance in A549/DDP was evaluated. The resistance protein which was detected in the study included P glycoprotein (P-gp) and topoisomerase II (Topo-II). Results: Rh-Endostatin below 400 IJg/mL showed no cytotoxicity in either A549 or A549/DDP after 72 h-treatment with it. The inhibited concentration of 50% (IC50) observed for DDP was (0.79 _+ 0.05) IJg/mL in A549 and (13.2 + 1.1) in A549/DDP respectively. IC50 was reduced to 2.57 + 0.05 #g/mL in A549/DDP treated by rh-Endostatin below the non-cytotoxic concentrations in combination with DDP, with a reversal fold (RF) of 5.14 and a relative reversal rate of 85.6%. Apoptotic rates were 2.01%, 13.47% and 29.26% re- spectively for cells treated with rh-Endostain, DDP, and the combination. The rate of the A549/DDP control group was 0.99%. The expression level of P-gp or Topo-II was higher in A549/DDP cells than in A549 cells. Rh-Endostatin may partially reverse DDP-resistance in A549/DDP cells in vitro, with a probable mechanism related to lowering expression of P-gp and Topo-II. Conclusien: Rh-Endostatin of non-cytotoxic dose partially reversed cisptatin resistance in cisplatin-resistant human lung adenocarcinoma cell line A549/DDP. Rh-Endostatin reversed the resistance of A549/DDP cells to DDP, which may be related to decreased protein expression of P-gp and Topo-II in A549/DDP cells.展开更多
基金Key R&D Program of Yan’an Municipal Bureau of Science and Technology(Project No.2021YF-21)。
文摘Objective:To analyze the clinical efficacy,progression-free survival,and safety of anlotinib in the treatment of advanced lung cancer.Methods:A retrospective analysis was conducted using data from 60 patients with advanced lung cancer treated with anlotinib from May 2019 to May 2021.This analysis aimed to comprehensively evaluate the clinical efficacy,progression-free survival,and adverse reactions of anlotinib.Results:The median progression-free survival(PFS)for the 60 patients was 5.79 months,with an overall response rate(ORR)of 21%and a disease control rate(DCR)of 90%.In the first-line group,the median PFS was 6.20 months,ORR was 76.92%,and DCR was 84.61%.The second-line group showed a median PFS of 6.30 months,ORR of 28.57%,and DCR of 90.48%.In the third-line group,the median PFS was 5.34 months,ORR was 19.23%,and DCR was 92.30%.The single-agent group exhibited a median PFS of 5.09 months,ORR of 23.33%,and DCR of 76.67%.In the combination group,the median PFS was 6.53 months,ORR was 46.67%,and DCR was 100%.The combination group demonstrated a significantly higher medication effect than the single-drug group,and adverse drug reactions were mostly grade 1-2.Conclusion:Anlotinib exhibits a better disease control rate and survival benefit in the treatment of advanced lung cancer.The combination effect is superior to monotherapy,with relatively controllable adverse effects.
基金supported by grants from CAMS Innovation Fund for Medical Sciences(CIFMS)(No.2021-I2M-1-014)and National Key R&D Program of China(No.2021YFC2500700).
文摘Drug-induced interstitial lung disease(DILD)is the most common pulmonary adverse event of anticancer drugs.In recent years,the incidence of anticancer DILD has gradually increased with the rapid development of novel anticancer agents.Due to the diverse clinical manifestations and the lack of specific diagnostic criteria,DILD is difficult to diagnose and may even become fatal if not treated properly.Herein,a multidisciplinary group of experts from oncology,respiratory,imaging,pharmacology,pathology,and radiology departments in China has reached the“expert consensus on the diagnosis and treatment of anticancer DILD”after several rounds of a comprehensive investigation.This consensus aims to improve the awareness of clinicians and provide recommendations for the early screening,diagnosis,and treatment of anticancer DILD.This consensus also emphasizes the importance of multidisciplinary collaboration while managing DILD.
文摘BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung cancer(NSCLC).CASE SUMMARY A 67-year-old female patient in advanced lung adenocarcinoma suffered from drug resistance after EGFR-TKIs treatment.Secondary pathological tissue biopsy confirmed squamous cell carcinoma(SCC)transformation.Patients inevitably encountered drug resistance issues after receiving EGFR-TKIs treatment for a certain period of time,while EGFR-TKIs can significantly improve the survival of patients with EGFR-sensitive mutations in NSCLC.Notably,EGFR-TKIs resistance includes primary and acquired.Pathological transformation is one of the mechanisms of acquired resistance in EGFR-TKIs,with SCC transformation being relatively rare.Our results provide more detailed results of the patient’s diagnosis and treatment process on SCC transformation after EGFR-TKIs treatment for lung adenocarcinoma.CONCLUSION Squamous cell carcinoma transformation is one of the acquired resistance mechanisms of EGFR-TKIs in advanced lung adenocarcinoma with EGFR mutations.
文摘The introduction of the academic ideas such as“the treatment of tumor using Wind-dispelling drugs”and“the treatment of lung cancer should be combined with the governance of Wind”provided new ideas for the treatment of lung cancer.This article summarized the current research progress on anti-lung cancer effects by the two angles of single wind-dispelling drugs and formulas including wind-dispelling drugs.We also put forward the defects of the current research in order to further improve wind-dispelling drugs study and lay the foundation for the treatment of lung cancer.
基金National Natural Science Foundation of China(Grant No.81273297)Shenyang Science and Technology Plan.Public Health R&D Special Project(21-173-9-67).
文摘Advanced LUAD shows limited response to treatment including immune therapy.With the development of sequencing omics,it is urgent to combine high-throughput multi-omics data to identify new immune checkpoint therapeutic response markers.Using GSE72094(n=386)and GSE31210(n=226)gene expression profile data in the GEO database,we identified genes associated with lung adenocarcinoma(LUAD)death using tools such as“edgeR”and“maftools”and visualized the characteristics of these genes using the“circlize”R package.We constructed a prognostic model based on death-related genes and optimized the model using LASSO-Cox regression methods.By calculating the cell death index(CDI)of each individual,we divided LUAD patients into high and low CDI groups and examined the relationship between CDI and overall survival time by principal component analysis(PCA)and Kaplan-Meier analysis.We also used the“ConsensusClusterPlus”tool for unsupervised clustering of LUAD subtypes based on model genes.In addition,we collected data on the expression of immunomodulatory genes and model genes for each cohort and performed tumor microenvironment analyses.We also used the TIDE algorithm to predict immunotherapy responses in the CDI cohort.Finally,we studied the effect of PRKCD on the proliferation and migration of LUAD cells through cell culture experiments.The study utilized the TCGA-LUAD cohort(n=493)and identified 2,901 genes that are differentially expressed in patients with LUAD.Through KEGG and GO enrichment analysis,these genes were found to be involved in a wide range of biological pathways.The study also used univariate Cox regression models and LASSO regression analyses to identify 17 candidate genes that were best associated with mortality prognostic risk scores.By comparing the overall survival(OS)outcomes of patients with different CDI values,it was found that increased CDI levels were significantly associated with lower OS rates.In addition,the study used unsupervised cluster analysis to divide 115 LUAD patients into two distinct clusters with significant differences in OS timing.Finally,a prognostic indicator called CDI was established and its feasibility as an independent prognostic indicator was evaluated by Cox proportional risk regression analysis.The immunotherapy efficacy was more sensitive in the group with high expression of programmed cell death models.Relationship between programmed cell death(PCD)signature models and drug reactivity.After evaluating the median inhibitory concentration(IC50)of various drugs in LUAD samples,statistically significant differences in IC50 values were found in cohorts with high and low CDI status.Specifically,Gefitinib and Lapatinib had higher IC50 values in the high-CDI cohort,while Olaparib,Oxaliplatin,SB216763,and Axitinib had lower values.These results suggest that individuals with high CDI levels are sensitive to tyrosine kinase inhibitors and may be resistant to conventional chemotherapy.Therefore,this study constructed a gene model that can evaluate patient immunotherapy by using programmed cell death-related genes based on muti-omics.The CDI index composed of these programmed cell death-related genes reveals the heterogeneity of lung adenocarcinoma tumors and serves as a prognostic indicator for patients.
文摘Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide.Therapeutic failure in lung cancer(LUAD)is heavily influenced by drug resistance.This challenge stems from the diverse cell populations within the tumor,each having unique genetic,epigenetic,and phenotypic profiles.Such variations lead to varied therapeutic responses,thereby contributing to tumor relapse and disease progression.Methods:The Genomics of Drug Sensitivity in Cancer(GDSC)database was used in this investigation to obtain the mRNA expression dataset,genomic mutation profile,and drug sensitivity information of NSCLS.Machine Learning(ML)methods,including Random Forest(RF),Artificial Neurol Network(ANN),and Support Vector Machine(SVM),were used to predict the response status of each compound based on the mRNA and mutation characteristics determined using statistical methods.The most suitable method for each drug was proposed by comparing the prediction accuracy of different ML methods,and the selected mRNA and mutation characteristics were identified as molecular features for the drug-responsive cancer subtype.Finally,the prognostic influence of molecular features on the mutational subtype of LUAD in publicly available datasets.Results:Our analyses yielded 1,564 gene features and 45 mutational features for 46 drugs.Applying the ML approach to predict the drug response for each medication revealed an upstanding performance for SVM in predicting Afuresertib drug response(area under the curve[AUC]0.875)using CIT,GAS2L3,STAG3L3,ATP2B4-mut,and IL15RA-mut as molecular features.Furthermore,the ANN algorithm using 9 mRNA characteristics demonstrated the highest prediction performance(AUC 0.780)in Gefitinib with CCL23-mut.Conclusion:This work extensively investigated the mRNA and mutation signatures associated with drug response in LUAD using a machine-learning approach and proposed a priority algorithm to predict drug response for different drugs.
文摘In this editorial we comment on the article by Ji et al.We focus specifically on the EGFR tyrosine kinase inhibitor(EGFR-TKI)treatment and the development of drug resistance to EGFR-TKIs.
基金supported by the Natural Science Foundation of Hubei Province(no.2021CFB372 to Hua Xiong).
文摘Lung cancer is the leading cause of cancer-related deaths globally.In recent years,with the widespread use of genetic testing,epidermal growth factor receptor–tyrosine kinase inhibitor(EGFR-TKI)–targeted drugs have been efficacious to patients with lung adenocarcinoma exhibiting EGFR mutations.However,resistance to treatment is inevitable and eventually leads to tumor progression,recurrence,and reduction in the overall treatment efficacy.Lung cancer stem cells play a crucial role in the development of resistance toward EGFR-TKI–targeted therapy for lung adenocarcinoma.Lung cancer stem cells possess self-renewal,multilineage differentiation,and unlimited proliferation capabilities,which efficiently contribute to tumor formation and ultimately lead to tumor recurrence andmetastasis.In this study,we evaluated the origin,markers,stemness index,relevant classic studies,resistance mechanisms,related signaling pathways,and strategies for reversing lung cancer stem cell resistance to EGFR-TKIs to provide new insights on delaying or reducing resistance and to improve the treatment efficacy of patients with EGFR-mutated lung adenocarcinoma in the future.
基金supported by grants from National Natural Science Foundation of China(82273162)The Recruitment Program of Overseas High-Level Young Talents,Jiangsu Cancer Hospital Spark Fundamental Research Special Fund(ZJ202103)+1 种基金Jiangsu Province Health Care and Elderly Health Research Key Topics(LKZ2022007)Funding of Postdoctoral Funding of Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Xisike Clinical Oncology Research Foundation(Y-HS202102-0177).
文摘Previous studies have shown that PRDX5 and Nrf2 are antioxidant proteins related to abnormal reactive oxidative species(ROS).PRDX5 and Nrf2 play a critical role in the progression of inflammations and tumors.The combination of PRDX5 and Nrf2 was examined by Co-immunoprecipitation,western blotting and Immunohistochemistry.H2O2 was applied to affect the production of ROS and induced multi-resistant protein 1(MRP1)expression in NSCLC cells.The zebrafish models mainly investigated the synergistic effects of PRDX5 and Nrf2 on lung cancer drug resistance under oxidative stress.We showed that PRDX5 and Nrf2 form a complex and significantly increase the NSCLC tissues compared to adjacent tissues.The oxidative stress improved the combination of PRDX5 and Nrf2.We demonstrated that the synergy between PRDX5 and Nrf2 is positively related to the proliferation and drug resistance of NSCLC cells in the zebrafish models.In conclusion,our data indicated that PRDX5 could bind to Nrf2 and has a synergistic effect with Nrf2.Meanwhile,in the zebrafish models,PRDX5 and Nrf2 have significant regulatory impacts on lung cancer progression and drug resistance activities under oxidative stress.
文摘Amyloidosis is a rare spectrum of disease which involves deposition of misfolded extracellular proteins (amyloids) in various body organs leading to progressive organ dysfunction. Clinical presentation can be variable depending on the organ involved and type of protein. Amyloidosis can be classified based on quantity, type, and location of these proteins. Amyloid light-chain amyloidosis develops in the bone marrow, producing abnormal forms of light-chain proteins, which cannot be broken down. These proteins transform into amyloid fibrils and form amyloid deposits in different organs. Pulmonary amyloidosis is uncommonly diagnosed since it is rarely symptomatic. Diagnosis of pulmonary amyloidosis is usually made in the setting of systemic amyloidosis;however, it may present as localised pulmonary disease. Localized pulmonary Amyloidosis can present as nodular, cystic, or tracheobronchial amyloidosis. Depending on the degree of the interstitial involvement, it may affect alveolar gas exchange and cause respiratory symptoms. This is a case of a 47-year-old female with background history of interstitial lung disease presenting with progressive shortness of breath. Computed tomography scan revealed bilateral pulmonary nodules. The patient was referred to our thoracic surgery team with the suspicion of bronchogenic malignancy with metastasis. Diagnostic video assisted wedge resection was performed for this patient, and histology confirmed pulmonary amyloidosis of nodular type. Amyloid deposition simulates both inflammatory and neoplastic conditions. Definitive diagnosis requires biopsy confirmation therefore early detection and commencing the patient on appropriate treatment pathway may help in symptomatic relief and better outcome.
文摘Alectinib is a selective Anaplastic Lymphoma Kinase (ALK) tyrosine kinase inhibitor used as standard therapy for ALK-rearranged lung adenocarcinoma. Hemolytic anemia is considered a rare but significant adverse event of alectinib. Here, we report the case of a 78-year-old female with advanced ALK rearrangement-positive lung adenocarcinoma who developed grade 4 drug-induced hemolytic anemia after receiving alectinib as first-line therapy. We discontinued alectinib treatment and switched to brigatinib. As a result, anemia improved without recurrence of lung adenocarcinoma over one year.
基金the Grant from Beijing Natural Science Foundation (No.7992005)and a Grantfrom Postdoctoral Foundation of National Committee of E
文摘Objective: To investigate the co-expression of drug resistance- and apoptosis-related genes of cisplatin (CDDP)-selected lung adenocarcinoma cell line A 549 DDP for compared to the parental cell line A549, and reverse of drug resistance by antisense s-oligodeoxynucleotides (S-ODNs) of differentially expressed genes. Methods: Sense and antisense S-ODN were transferred into A 549 DDP cells by lipofectin. The expression of drug resistance and apoptosis related genes was examined by RT-PCR, immunocytochemistry and flow cytometry, respectively. Apoptostic cells were identified by DNA electrophoresis and terminal deoxynucleotidyl transferase (TdT)-mediated biotin dUTP nick end-labeling(TUNEL). Drug resistance of tumor cells was detected by a cell viability (MTT) assay. Results: The expression of bcl-2 was positive and that of multidrug resistance-associated protein (MRP) at mRNA and protein level was increased in A 549 DDP compared to A549 cells. MDR1, c-myc and topoisomeras II (TOPO II) were similarly co-expressed in two cell lines. Both cell lines were negative for c-erbB-2 expression. In A 549 DDP cells, the expression of bcl-2 and MRP was significantly inhibited by their respective antisense S-ODNs. Antisense S-ODNs could also decrease significantly drug resistance of A 549 DDP cells to CDDP by promoting cell apoptosis. Conclusion: Both intrinsic and acquired drug resistance were involved in co-expression of multiple MDR-related genes in lung adenocarcinoma. Cooperation of bcl-2 and MRP genes appeared to play an important action to confer the resistance of A 549 DDP cells to CDDP. Their antisense S-ODNs are responsible for the decrease of drug resistance of this cell line by promoting apoptosis.
文摘To approach the mechanism of lipopolysaccharide (LPS) in causing acute lung injury (ALI) and the protective effect of rhubarb and dexamethasone, lung specimens were examined with macroscopy, microscopy, electron microscopy and the biological markers of ALI including lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary capillary permeability and pulmonary alveolar permeability index were observed. The mechanism of the ALI is mainly due to direct injury of alveolar epithelium and pulmonary vascular endothelium. Rhubarb and dexamethasone could significantly reduce the edema of the lung tissue, decrease the red blood cell exudation, neutrophil infiltration and plasma protein exudation in the alveoli and all the biological markers in comparison with the ALI model rats, indicating they have protective action on vascular endothelium and alveolar epithelium.
基金This work was supported by grants from Shanghai Educational Committee Funds(No.99B18).
文摘Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell line WI-38, lung adenocarcinoma cell line SPCA-1 and its drug-resistant cells induced by different concentrations of doxorubicin were treated with restriction endonuclease Eco47III. The methylation status of MRP was examined by PCR, and the expressions of its mRNA and protein were evaluated by in situ hybridization and immunohistochemistry. Results: MRP gene promoter region of WI-38 cells was in hypermethylation status, but the promoter region of MRP in SPCA-1 cells and their resistant derivatives induced by different concentrations of doxorubicin were in hypomethylation status. There were significant differences in the expression of MRP mRNA among WI-38 cell line, SPCA-1 cells and their drug-resistant derivatives induced by different concentration of doxorubicin. Consistently, MRP immunostaining presented similar significant differences. Conclusion: The promoter region of MRP in SPCA-1 lung adenocarcinoma cells was in hypomethylation status. The hypomethylation status of 5' regulatory region of MRP promoter is an important structural basis that can increase the activity of transcription and results in the development of drug resistance in lung cancer.
基金the Natural Science Foundation of Shanghai, China! (96ZB14043).
文摘Objective: To study on the effect of MRP gene overexpression on prognosis of patients with non-small lung cancer (NSCLC). Methods: Paraffin-embedded tissues from 47 cases of NSCLC who had undergone radical tumor resection were examined for expression of MRP gene mRNA by in situ hybridization using labelled digoxigenin probes combined with immunohistochemistry. All the patients were retrospectively followed-up. Results: All of the 47 lung cancer specimens were found to have overexpression of MRP gene mRNA. It was significantly correlated with patients' survival time, response to chemotherapy, recurrence or metastases after surgery, but was not correlated with histology, tumor size, node status, TNM stage, degree of differentiation, age and sex. Conclusion: Overexpression of MRP gene is a marker of prognostic significance in patients with NSCLC.
基金Institutes of Health Research(CIHR)-Natural Sciences and Engineering Research Council(NSERC)of the Canada Collaborative Health Research Projects program for their financial support(Grant No.:355935)the Natural Sciences and Engineering Research Council of Canada Industrial Research Chair(IRC)program。
文摘In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL),5-fluorouracil(F),and oxaliplatin(OX)(FOLFOX)is routinely employed to treat several types of solid tumours in various tissues.However,F is characterized by large interpatient variability with respect to plasma concentration,which necessitates close monitoring during treatments using of this compound.Since plasma drug concentrations often do not reflect tissue drug concentrations,it is essential to utilize sample-preparation methods specifically suited to monitoring drug levels in target organs.In this work,in vivo solid-phase microextraction(in vivo SPME)is proposed as an effective tool for quantitative therapeutic drug monitoring of FOLFOX in porcine lungs during pre-clinical IVLP and intravenous(IV)trials.The concomitant extraction of other endogenous and exogenous small molecules from the lung and their detection via liquid chromatography coupled to high resolution mass spectrometry(LC-HRMS)enabled an assessment of FOLFOX's impact on the metabolomic profile of the lung and revealed the metabolic pathways associated with the route of administration(IVLP vs.IV)and the therapy itself.This study also shows that the immediate instrumental analysis of metabolomic samples is ideal,as long-term storage at80℃ results in changes in the metabolite content in the sample extracts.
文摘It is the habit of some drug consumers to dissolve the powder of crushed pills, intended for oral use, in water and inject this solution intravenously. Insoluble particles than obstruct pulmonary vessels causing microscopic pulmonary emboli. These foreign bodies migrate and penetrate into the perivascular space and interstitium, resulting in chronic inflammation and foreign body giant cell reaction. As a result of this a granulomatous interstitial fibrosis can develop, which has also been described as pulmonary talcosis. We are reporting the case of a 22 year old male with a history of long-term intravenous drug abuse. He presented to our hospital complaining of dyspnoea, cough and generalized weakness. We describe an extensive diagnostic process concluded by an open lung biopsy establishing a definitive diagnosis of this rare granulomatous lung disease. This case underlines the importance of a thorough diagnostic work up and the pathogenic potential of foreign material reaching the lung via blood circulation in amongst the differential diagnoses of interstitial lung diseases, especially occurring in this group of patients.
基金funding from National Institutes of Health(No.1UG3TR003148-01)the American Heart Association(No.442611-NU-80922)+1 种基金California Institute for Regenerative Medicine(No.DISC2COVID19-11838)COVID-19 research funding from David Geffen School of Medicine at UCLA.
文摘There is a pressing need for effective therapeutics for coronavirus disease 2019(COVID-19),the respiratory disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus.The process of drug development is a costly and meticulously paced process,where progress is often hindered by the failure of initially promising leads.To aid this chal-lenge,in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening,thereby saving valuable time and resources during a pandemic crisis.The SARS-CoV-2 virus attacks the lung,an organ where the unique three-dimensional(3D)structure of its functional units is critical for proper respiratory function.The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types.Current model systems include Transwell,organoid and organ-on-a-chip or microphysiological systems(MPSs).We review models that have direct relevance toward modeling the pathology of COVID-19,including the processes of inflammation,edema,coagulation,as well as lung immune function.We also consider the practical issues that may influence the design and fabrication of MPS.The role of lung MPS is addressed in the context of multi-organ models,and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.
文摘47 senile non-parvicellular lung cancer patients at stage Ⅲ or Ⅳ were randomly divided into a treatment group (26 cases) treated by radiotherapy plus traditional Chinese medicine (TCM) and a control group (21 cases) treated only by radiotherapy for observation of the therapeutic effects.The patients in the treatment group orally took Chinese medicine during and after the radiotherapy.There was no obvious difference in short-term therapeutic effects between the two groups,but the long-term curative effects in the treatment group was obviously superior to that in the control group (P<0.05 or P<0.01).Conclusion:radiotherapy plus TCM can prolong the survival period for senile non-parvicellular lung cancer patients.
基金Supported by a grant from the Natural Science Foundation of Liaoning Province(No.201202043)
文摘Objective: Recombinant human Endostatin (rh-Endostatin, YH-16) can reverse cisplatin resistance in A549/DDP cells. However, the possible effect of rh-Endostatin in reversing DDP-resistance in A549/DDP cells and the mechanism are needed to be investigated. Methods: Lung adenocarcinoma cell line A549 and its DDP-resistant cell line A549/DDP were treated with DDP and/or recombinant human Endostatin. Difference in drug resistance was analyzed between different regi- mens and between different cell lines after a 72 h-treatment in vitro. And below the non-cytotoxic concentration of rh-End- ostatin, the possibility of rh-Endostatin in reversing DDP-resistance in A549/DDP was evaluated. The resistance protein which was detected in the study included P glycoprotein (P-gp) and topoisomerase II (Topo-II). Results: Rh-Endostatin below 400 IJg/mL showed no cytotoxicity in either A549 or A549/DDP after 72 h-treatment with it. The inhibited concentration of 50% (IC50) observed for DDP was (0.79 _+ 0.05) IJg/mL in A549 and (13.2 + 1.1) in A549/DDP respectively. IC50 was reduced to 2.57 + 0.05 #g/mL in A549/DDP treated by rh-Endostatin below the non-cytotoxic concentrations in combination with DDP, with a reversal fold (RF) of 5.14 and a relative reversal rate of 85.6%. Apoptotic rates were 2.01%, 13.47% and 29.26% re- spectively for cells treated with rh-Endostain, DDP, and the combination. The rate of the A549/DDP control group was 0.99%. The expression level of P-gp or Topo-II was higher in A549/DDP cells than in A549 cells. Rh-Endostatin may partially reverse DDP-resistance in A549/DDP cells in vitro, with a probable mechanism related to lowering expression of P-gp and Topo-II. Conclusien: Rh-Endostatin of non-cytotoxic dose partially reversed cisptatin resistance in cisplatin-resistant human lung adenocarcinoma cell line A549/DDP. Rh-Endostatin reversed the resistance of A549/DDP cells to DDP, which may be related to decreased protein expression of P-gp and Topo-II in A549/DDP cells.