The exsolutious of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (〉95%) + chr...The exsolutious of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (〉95%) + chromite (1%-4%) + diopside (〈1%). Two types of olivine are found in thin sections: one (Fo = 94) is coarse-grained, elongated with development of kink bands, wavy extinction and irregular margins; and the other (Fo = 96) is fine-grained and poly-angied. Some of the olivine grains contain minor Ca, Cr and Ni. Besides the exsolutions in olivine, three micron-size inclusions are also discovered. Analyzed through energy dispersive system (EDS) with unitary analytical method, the average compositions of the inclusions are: Na20, 3.12%-3.84%; MgO, 19.51%-23.79%; Al2O3, 9.33%-11.31%; SiO2, 44.89%-46.29%; CaO, 11.46%-12.90%; Cr2O3, 0.74%-2.29%; FeO, 4.26%- 5.27%, which is quite similar to those of amphibole. Diopside is anhedral f'dling between olivines, or as micro-inclusions oriented in olivines. Chromite appears euhedral distributed between olivines, sometimes with apparent compositional zone. From core to rim of the chromite, Fe content increases and Cr decreases; and A! and Mg drop greatly on the rim. There is always incomplete magnetite zone around the chromite. Compared with the nodular chromite in the same section, the euhedral chromite has higher Fe3O4 and lower MgCr2O4 and MgAI2O4 end member contents, which means it formed under higher oxygen fugacity environment. With a geothermometer estimation, the equilibrium crystalline temperature is 820℃-960℃ for olivine and nodular chromite, 630℃-770℃ for olivine and euhedral chromite, and 350℃-550℃ for olivine and exsoluted magnetite, showing that the exsolutions occurred late at low temperature. Thus we propose that previously depleted mantle harzburgite reacted with the melt containing Na, Al and Ca, and produced an olivine solid solution added with Na^+, Al^3+, Ca^2+, Fe^3+, Cr^3+. With temperature decreasing, the olivine solid solution decomposed; and Fe^3+, Cr^3+ diffused into magnetite and Ca^2+ and Na^+ into clinopyroxene, both of which formed intergrowth textures. A few Fe^3+ and Cr^3+ entered interstitial chromite. Through later tectonism, the peridotite recrystallized and formed deformational coarse grained olivine, fine grained and poly-angled olivine, and euhedral grained chromite. Due to the fast cooling rate of the rock or rapid tectonic emplacement, the exsolution textures in olivine and compositional zones of chromite are preserved.展开更多
The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very import...The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very important for discussion of the evolution of the Eastern Tethys Ocean.There is no complete ophiolite assemblage in the Zedang ophiolite.The Zedang ophiolite is mainly composed of mantle peridotite and a suite of volcanic rocks as well as siliceous rocks,with some blocks of olivinepyroxenite.The mantle peridotite mainly consists of Cpx-harzburgite,harzburgite,some lherzolite,and some dunite.A suite of volcanic rocks is mainly composed of caic-aikaline pyroclastic rocks and secondly of tholeiitic pillow lavas,basaltic andesites,and some boninitic rocks with a lower TiO2 content (TiO2 < 0.6%).The pyroclastic rocks have a LREE-enriched REE pattern and a LILE-enriched (compared to HFSE) spider diagram,demonstrating an island-arc origin.The tholeiitic volcanic rock has a LREE-depleted REE pattern and a LILE-depleted (compared to HFSE) spider diagram,indicative of an origin from MORB.The boninitic rock was generated from fore-arc extension.The Luobusa ophiolite consists of mantle peridotite and mafic-ultramaflc cumulate units,without dike swarms and volcanic rocks.The mantle peridotite mainly consists of dunite,harzburgite with low-Opx (Opx < 25%),and harzburgite (Opx > 25%),which can be divided into two facies belts.The upper is a dunite-harzburgite (Opx < 25%) belt,containing many dunite lenses and a large-scale chromite deposit with high Cr203; the lower is a harzburgite (Opx >25%) belt with small amounts of dunite and lherzolite.The Luobusa mantle peridotite exhibits a distinctive vertical zonation of partial melting with high melting in the upper unit and low melting in the lower.Many mantle peridotites are highly depleted,with a characteristic U-shaped REE pattern peculiar to fore-arc peridotite.The Luobusa cumulates are composed of wehrlite and olivine-pyroxenite,of the P-P-G ophiolite series.This study indicates that the Luobusa ophiolite was formed in a fore-arc basin environment on the basis of the occurrence of highly depleted mantle peridotite,a high-Cr2O3 chromite deposit,and cumulates of the P-P-G ophiolite series.We conclude that the evolution of the Eastern Tethys Ocean involved three stages:the initial ocean stage (formation of MORB volcanic rock and dikes),the forearc extension stage (formation of high-Cr203 chromite deposits and P-P-G cumulates),and the islandarc stage (formation of caic-alkaline pyroclastic rocks).展开更多
We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetr...We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetrated by two quadrilateral signal crystals with sizes of 17 pm × 10 μm and 20 μm × 7 μm,respectively.The moissanite is green with parallel extinction.The absorption peaks in its Raman spectra are at 967-971 cm-1,787-788 cm-1,and 766 cm-1.The absorption peaks in the infrared spectra are at 696 cm-1,767 cm-1,1450 cm-1,and 1551 cm-1,which are distinctly different from the peaks for synthetic silicon carbide.Moissanites have been documented to form in ultra-high pressure,high temperature,and extremely low fO2 environments and their 13C-depleted compositions indicate a lower mantle origin.Combined with previous studies about other ultra-high pressure and highly reduced minerals in Luobusa ophiolite,the in-situ natural moissanite we found indicates a deep mantle origin of some materials in the mantle sequence of Luobusa ophiolite.Further,we proposed a transformation model to explain the transfer process of UHP materials from the deep mantle to ophiolite sequence and then to the supra-subduction zone environment.Interactions between the crown of the mantle plume and mid-ocean ridge are suggested to be the dominant mechanism.展开更多
A wide variety of unusual mantle has been reported from podiform chromitite orebodies Cr-31 and Cr-74 in the Luobusa (罗布莎) ophiolite, Tibet. A detailed investigation of chromitite ore- body Cr-ll, located in the ...A wide variety of unusual mantle has been reported from podiform chromitite orebodies Cr-31 and Cr-74 in the Luobusa (罗布莎) ophiolite, Tibet. A detailed investigation of chromitite ore- body Cr-ll, located in the Kangjinla (康金拉) district at the eastern end of the ophiolite, has revealed many of the same minerals, including diamond, moissanite, and some native elements, alloys, oxides, sulphides, silicates, carbonates, and tungstates. This orebody is particularly rich in diamonds, with over 1 000 grains recovered from about 1 100 kg sample of chromitite. More detailed studies and experiments are needed to understand the origin and significance of these unusual minerals because they have not been found in situ. It is a great breakthrough in mineralogical research that we have picked up more than 40 kinds of minerals from the Kangjinla chromite deposit in Luobusa. It is notable that a large amount of diamonds were firstly discovered from the Kangjinla chromite deposit as well as many other unusual minerals, such as moissanites, rutiles, native irons, and metal alloys. Especially, that diamond was found again in different chromitites in the same ophiolite belt provided new key evidence for discussing the origin of the diamond and the hosted chromitite and ophiolite. The mantle mineral group in Tibet has great significance in mineralogy and geodynamics.展开更多
We present a new dataset on platinum group elements(PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better ...We present a new dataset on platinum group elements(PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better constrain the petrogenesis of the Zedang and Luobusa ophiolites and the tectonic evolution of the Neo-Tethys. Plots of chondrite-normalized PGE, PGE vs. Mg#, and PGE vs. Al_2O_3 suggest that the lherzolite and harzburgite from Zedang and Luobusa have similar PGE characteristics. The Zedang and Luobusa peridotites display U-shaped REE patterns and are enriched in some incompatible elements, indicative of melt-rock interaction. The PGE characteristics may be attributed to partial melting and heterogeneous melt-rock interaction. Mineral chemistry and whole rock major and trace elements data suggest that lherzolite and harzburgite from Zedang and Luobusa have similar geochemical properties. On the spinel Mg# vs. Cr# plot, the composition of the Zedang and Luobusa peridotites is consistent with both abyssal and subduction-zone peridotites. This study indicates that the Zedang and Luobusa peridotites have a similar origin and evolution path: they could have originated from a normal mid-ocean ridge environment and got refertilization in a supra-subduction zone setting.展开更多
The Luobusa Ophiolite,Southern Tibet,lies in the eastern portion of Indus–Yarlung Zangbo suture zone that separates Eurasia from the Indian continent.An aeromagnetic reconnaissance survey has revealed an EWtrending Y...The Luobusa Ophiolite,Southern Tibet,lies in the eastern portion of Indus–Yarlung Zangbo suture zone that separates Eurasia from the Indian continent.An aeromagnetic reconnaissance survey has revealed an EWtrending Yarlung Zangbo River aeromagnetic anomaly zone,and it is considered to be caused mainly by the Indus–Yarlung Zangbo Ophiolite.The Luobusa Ophiolite reflects the eastern portion of the Yarlung Zangbo River aeromagnetic anomaly zone.Conventionally,the ultramafic rock in the Luobusa Ophiolite is considered as the origin of the high magnetic anomalies.However,results from the surface magnetic survey and the magnetic susceptibility measurements from drill cores indicate that the high magnetic anomalies are distributed inhomogeneously in the Luobusa Ophiolite.In some cases,the susceptibility exhibits more than 30 times difference between two sides of the same sample.A fact emerged that the susceptibility of dunite with serpentinization is higher than that of fresh dunite,harzburgite and chromite when we analyzed the measurement results.In order to understand the origin of the high magnetic anomalies,we measured the density and susceptibility of 17 samples,microscopic and electron probe analyses have been performed as well.The result indicates the presence of dunite with serpentinization containing an abundant of micro-fissures filled with magnetite.Olivine has a susceptibility of about 2.7–351(910-5SI),pyroxene about 16–320,and chromite about200–800.All these units feature relatively low susceptibility in ultramafic rock,and only the magnetite is characterized by a high susceptibility of about 200,000(910-5SI).Based on these observations,we conclude that the precipitation of magnetite in the process of serpentinization of the olivine caused by the geological process in the Luobusa Ophiolite is the origin of high magnetic anomalies.展开更多
文摘The exsolutious of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (〉95%) + chromite (1%-4%) + diopside (〈1%). Two types of olivine are found in thin sections: one (Fo = 94) is coarse-grained, elongated with development of kink bands, wavy extinction and irregular margins; and the other (Fo = 96) is fine-grained and poly-angied. Some of the olivine grains contain minor Ca, Cr and Ni. Besides the exsolutions in olivine, three micron-size inclusions are also discovered. Analyzed through energy dispersive system (EDS) with unitary analytical method, the average compositions of the inclusions are: Na20, 3.12%-3.84%; MgO, 19.51%-23.79%; Al2O3, 9.33%-11.31%; SiO2, 44.89%-46.29%; CaO, 11.46%-12.90%; Cr2O3, 0.74%-2.29%; FeO, 4.26%- 5.27%, which is quite similar to those of amphibole. Diopside is anhedral f'dling between olivines, or as micro-inclusions oriented in olivines. Chromite appears euhedral distributed between olivines, sometimes with apparent compositional zone. From core to rim of the chromite, Fe content increases and Cr decreases; and A! and Mg drop greatly on the rim. There is always incomplete magnetite zone around the chromite. Compared with the nodular chromite in the same section, the euhedral chromite has higher Fe3O4 and lower MgCr2O4 and MgAI2O4 end member contents, which means it formed under higher oxygen fugacity environment. With a geothermometer estimation, the equilibrium crystalline temperature is 820℃-960℃ for olivine and nodular chromite, 630℃-770℃ for olivine and euhedral chromite, and 350℃-550℃ for olivine and exsoluted magnetite, showing that the exsolutions occurred late at low temperature. Thus we propose that previously depleted mantle harzburgite reacted with the melt containing Na, Al and Ca, and produced an olivine solid solution added with Na^+, Al^3+, Ca^2+, Fe^3+, Cr^3+. With temperature decreasing, the olivine solid solution decomposed; and Fe^3+, Cr^3+ diffused into magnetite and Ca^2+ and Na^+ into clinopyroxene, both of which formed intergrowth textures. A few Fe^3+ and Cr^3+ entered interstitial chromite. Through later tectonism, the peridotite recrystallized and formed deformational coarse grained olivine, fine grained and poly-angled olivine, and euhedral grained chromite. Due to the fast cooling rate of the rock or rapid tectonic emplacement, the exsolution textures in olivine and compositional zones of chromite are preserved.
基金jointly supported by the Geological Survey Project of Chinese (Grant No.1212010911070 and No.12120113093900)National Science Foundation of China (Grant No. 41072167)Institute of Geology, Chinese Academy of Geological Sciences (Grant No.J1309)
文摘The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very important for discussion of the evolution of the Eastern Tethys Ocean.There is no complete ophiolite assemblage in the Zedang ophiolite.The Zedang ophiolite is mainly composed of mantle peridotite and a suite of volcanic rocks as well as siliceous rocks,with some blocks of olivinepyroxenite.The mantle peridotite mainly consists of Cpx-harzburgite,harzburgite,some lherzolite,and some dunite.A suite of volcanic rocks is mainly composed of caic-aikaline pyroclastic rocks and secondly of tholeiitic pillow lavas,basaltic andesites,and some boninitic rocks with a lower TiO2 content (TiO2 < 0.6%).The pyroclastic rocks have a LREE-enriched REE pattern and a LILE-enriched (compared to HFSE) spider diagram,demonstrating an island-arc origin.The tholeiitic volcanic rock has a LREE-depleted REE pattern and a LILE-depleted (compared to HFSE) spider diagram,indicative of an origin from MORB.The boninitic rock was generated from fore-arc extension.The Luobusa ophiolite consists of mantle peridotite and mafic-ultramaflc cumulate units,without dike swarms and volcanic rocks.The mantle peridotite mainly consists of dunite,harzburgite with low-Opx (Opx < 25%),and harzburgite (Opx > 25%),which can be divided into two facies belts.The upper is a dunite-harzburgite (Opx < 25%) belt,containing many dunite lenses and a large-scale chromite deposit with high Cr203; the lower is a harzburgite (Opx >25%) belt with small amounts of dunite and lherzolite.The Luobusa mantle peridotite exhibits a distinctive vertical zonation of partial melting with high melting in the upper unit and low melting in the lower.Many mantle peridotites are highly depleted,with a characteristic U-shaped REE pattern peculiar to fore-arc peridotite.The Luobusa cumulates are composed of wehrlite and olivine-pyroxenite,of the P-P-G ophiolite series.This study indicates that the Luobusa ophiolite was formed in a fore-arc basin environment on the basis of the occurrence of highly depleted mantle peridotite,a high-Cr2O3 chromite deposit,and cumulates of the P-P-G ophiolite series.We conclude that the evolution of the Eastern Tethys Ocean involved three stages:the initial ocean stage (formation of MORB volcanic rock and dikes),the forearc extension stage (formation of high-Cr203 chromite deposits and P-P-G cumulates),and the islandarc stage (formation of caic-alkaline pyroclastic rocks).
基金the National Natural Science Foundation of China (Grant No. 41002076 and No. 40921001)the China Geological Survey (Grant No. 1212011121275)the SinoProbe-05-07 of the Ministry of Science and Technology of China (Grant No. 05-07)
文摘We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetrated by two quadrilateral signal crystals with sizes of 17 pm × 10 μm and 20 μm × 7 μm,respectively.The moissanite is green with parallel extinction.The absorption peaks in its Raman spectra are at 967-971 cm-1,787-788 cm-1,and 766 cm-1.The absorption peaks in the infrared spectra are at 696 cm-1,767 cm-1,1450 cm-1,and 1551 cm-1,which are distinctly different from the peaks for synthetic silicon carbide.Moissanites have been documented to form in ultra-high pressure,high temperature,and extremely low fO2 environments and their 13C-depleted compositions indicate a lower mantle origin.Combined with previous studies about other ultra-high pressure and highly reduced minerals in Luobusa ophiolite,the in-situ natural moissanite we found indicates a deep mantle origin of some materials in the mantle sequence of Luobusa ophiolite.Further,we proposed a transformation model to explain the transfer process of UHP materials from the deep mantle to ophiolite sequence and then to the supra-subduction zone environment.Interactions between the crown of the mantle plume and mid-ocean ridge are suggested to be the dominant mechanism.
基金supported by China Geological Survey (Nos. 1212010610107 and 1212010610105)the National Natural Science Foundation of China (No. 40610098)
文摘A wide variety of unusual mantle has been reported from podiform chromitite orebodies Cr-31 and Cr-74 in the Luobusa (罗布莎) ophiolite, Tibet. A detailed investigation of chromitite ore- body Cr-ll, located in the Kangjinla (康金拉) district at the eastern end of the ophiolite, has revealed many of the same minerals, including diamond, moissanite, and some native elements, alloys, oxides, sulphides, silicates, carbonates, and tungstates. This orebody is particularly rich in diamonds, with over 1 000 grains recovered from about 1 100 kg sample of chromitite. More detailed studies and experiments are needed to understand the origin and significance of these unusual minerals because they have not been found in situ. It is a great breakthrough in mineralogical research that we have picked up more than 40 kinds of minerals from the Kangjinla chromite deposit in Luobusa. It is notable that a large amount of diamonds were firstly discovered from the Kangjinla chromite deposit as well as many other unusual minerals, such as moissanites, rutiles, native irons, and metal alloys. Especially, that diamond was found again in different chromitites in the same ophiolite belt provided new key evidence for discussing the origin of the diamond and the hosted chromitite and ophiolite. The mantle mineral group in Tibet has great significance in mineralogy and geodynamics.
基金supported by the Marine Geological Survey of the 1 : 250 000 Rizhao Sheet and Lianyungang Sheet (No. GZH201400206)
文摘We present a new dataset on platinum group elements(PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better constrain the petrogenesis of the Zedang and Luobusa ophiolites and the tectonic evolution of the Neo-Tethys. Plots of chondrite-normalized PGE, PGE vs. Mg#, and PGE vs. Al_2O_3 suggest that the lherzolite and harzburgite from Zedang and Luobusa have similar PGE characteristics. The Zedang and Luobusa peridotites display U-shaped REE patterns and are enriched in some incompatible elements, indicative of melt-rock interaction. The PGE characteristics may be attributed to partial melting and heterogeneous melt-rock interaction. Mineral chemistry and whole rock major and trace elements data suggest that lherzolite and harzburgite from Zedang and Luobusa have similar geochemical properties. On the spinel Mg# vs. Cr# plot, the composition of the Zedang and Luobusa peridotites is consistent with both abyssal and subduction-zone peridotites. This study indicates that the Zedang and Luobusa peridotites have a similar origin and evolution path: they could have originated from a normal mid-ocean ridge environment and got refertilization in a supra-subduction zone setting.
基金supported by the National Natural Science Foundation of China (U1262206)Chinese Geological Survey Geological Prospecting Fund (12120113095200)the National Science and Technology Program (2011ZX05019-007)
文摘The Luobusa Ophiolite,Southern Tibet,lies in the eastern portion of Indus–Yarlung Zangbo suture zone that separates Eurasia from the Indian continent.An aeromagnetic reconnaissance survey has revealed an EWtrending Yarlung Zangbo River aeromagnetic anomaly zone,and it is considered to be caused mainly by the Indus–Yarlung Zangbo Ophiolite.The Luobusa Ophiolite reflects the eastern portion of the Yarlung Zangbo River aeromagnetic anomaly zone.Conventionally,the ultramafic rock in the Luobusa Ophiolite is considered as the origin of the high magnetic anomalies.However,results from the surface magnetic survey and the magnetic susceptibility measurements from drill cores indicate that the high magnetic anomalies are distributed inhomogeneously in the Luobusa Ophiolite.In some cases,the susceptibility exhibits more than 30 times difference between two sides of the same sample.A fact emerged that the susceptibility of dunite with serpentinization is higher than that of fresh dunite,harzburgite and chromite when we analyzed the measurement results.In order to understand the origin of the high magnetic anomalies,we measured the density and susceptibility of 17 samples,microscopic and electron probe analyses have been performed as well.The result indicates the presence of dunite with serpentinization containing an abundant of micro-fissures filled with magnetite.Olivine has a susceptibility of about 2.7–351(910-5SI),pyroxene about 16–320,and chromite about200–800.All these units feature relatively low susceptibility in ultramafic rock,and only the magnetite is characterized by a high susceptibility of about 200,000(910-5SI).Based on these observations,we conclude that the precipitation of magnetite in the process of serpentinization of the olivine caused by the geological process in the Luobusa Ophiolite is the origin of high magnetic anomalies.
文摘近些年,我们在西藏罗布莎蛇绿岩型铬铁矿中发现金刚石和柯石英等超高压矿物和异常地幔矿物,成果多次在美国 AGU 会议上做特邀报告,发表在2007年《Geology》和国内期刊上,并有4个新矿物获得国际新矿物委员会批准。这些成果在国内外引起广泛关注,也引发出一系列新的科学问题,例如,金刚石的赋存状态,物质来源和成因?与其伴随的铬铁矿的成因,与金刚石的关系?两者形成的地质背景、物理化学环境、保存和运移的规律、机制,等等。为了探讨这些问题,我们认为除了研究罗布莎铬铁矿之外,还应该开展铬铁矿的围岩地幔橄榄岩的研究,看看它们中都有什么矿物,与铬铁矿中的矿物究竟存在什么异同以及两者之间的成因联系?为此,我们从西藏罗布莎铬铁矿31号矿体不同高度取回两个各自为1吨重的方辉橄榄岩围岩样品,开展人工重砂矿物的分选。通过矿物成分、激光拉曼和 X 射线衍射光谱的研究,从中识别出金刚石等50余种矿物。经初步对比,认为铬铁矿围岩方辉橄榄岩中发现的矿物组合与铬铁矿中相似,表明两者存在成因上的联系,并可能共同经历了从深部到浅部的地质过程。