The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec...The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.展开更多
This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theor...This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.展开更多
The robust absolute stability of general Lurie interval direct control system with multiple nonlinearities, with respect to model variations, is considered. Some sufficient conditions of absolute stability for the sys...The robust absolute stability of general Lurie interval direct control system with multiple nonlinearities, with respect to model variations, is considered. Some sufficient conditions of absolute stability for the system are obtained, which generalize and improve the previous results.展开更多
This paper deals with the problem of the absolute stability for general neutral type Lurie indirect control systems by Lyapunov method and linear matrix inequality (LMI) technique. Delay-dependent sufficient conditi...This paper deals with the problem of the absolute stability for general neutral type Lurie indirect control systems by Lyapunov method and linear matrix inequality (LMI) technique. Delay-dependent sufficient conditions for the absolute stability are derived and expressed as the feasibility problem of LMI, which can be easily solved by Matlab Toolbox. Finally, some examples are provide to demonstrate the effectiveness of proposed method.展开更多
In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are c...In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are convenient in application.展开更多
In this paper, the absolute stability of Lurie control system with probabilistic time-varying delay is studied. By using a new extended Lyapunov-Krasovskii functional, an improved stability criterion based on LMIs is ...In this paper, the absolute stability of Lurie control system with probabilistic time-varying delay is studied. By using a new extended Lyapunov-Krasovskii functional, an improved stability criterion based on LMIs is presented and its solvability heavily depends on the sizes of both the delay range and its derivatives, which has wider application fields than those present results. The efficiency and reduced conservatism of the presented results can be demonstrated by two numerical examples with giving some comparing results.展开更多
In this paper. it is discussed that the absohue stability for zero solution of thediscrete type Lurie control systmin which the nonlinear function f(σ) satisfying conditions as followsIt gives the necessary and suffi...In this paper. it is discussed that the absohue stability for zero solution of thediscrete type Lurie control systmin which the nonlinear function f(σ) satisfying conditions as followsIt gives the necessary and sufficent conditions for the absolute stability forystem (I) under conditions (2).We also obtain the sufficient criteria for absolutesiability of the simplified system of (I) under conditions (3) .展开更多
In this paper, the problem of absolute stability of continuous time with parametric nonlinear system uncertainty of a linear part and sector uncertainty of its nonlinear part is considered, the and sufficient conditi...In this paper, the problem of absolute stability of continuous time with parametric nonlinear system uncertainty of a linear part and sector uncertainty of its nonlinear part is considered, the and sufficient conditions for absolute stability of direct and indirect control systems are presented. The corresponding results for robust absolute stability are improved.展开更多
Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is o...Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is of vitul importance in control theory and its applications. Many researchers have studied the stability criteria of systems with constant delay or bound varying time delay, but few of them studied large time delay or unbound time delay. Large time delay existes commonly in various engineering applications. In this paper, the absolute stability of Lurie type direct control systems and indirect control systems with several time delays are discussed. Based on Lyapunov theory, the new delay dependent absolute stability criteria are derived. In our theorem, time delays can be unbound functions, which shows that the results are less conservative than that of existed criteria.展开更多
In this paper, we give necessary and sufficient conditions for absolute stability of several classes of direct control systems, and discuss the absolute stability of the first canonical form of control system. The cor...In this paper, we give necessary and sufficient conditions for absolute stability of several classes of direct control systems, and discuss the absolute stability of the first canonical form of control system. The corresponding results in references [3,5,6] and [7] are improved.展开更多
基金The National Natural Science Foundation of China(No.60835001,60875035,60905009,61004032,61004064,11071001)China Postdoctoral Science Foundation(No.201003546)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20093401110001)the Major Program of Higher Education of Anhui Province(No.KJ2010ZD02)the Natural Science Research Project of Higher Education of Anhui Province(No.KJ2011A020)
文摘The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.
基金Project supported by the National Natural Science Foundation of China(Grant No.62363005)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20161BAB212032 and 20232BAB202034)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant Nos.GJJ202602 and GJJ202601)。
文摘This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.
文摘The robust absolute stability of general Lurie interval direct control system with multiple nonlinearities, with respect to model variations, is considered. Some sufficient conditions of absolute stability for the system are obtained, which generalize and improve the previous results.
基金Supported by National Natural Science Foundation of China (60721062) and National High Technology Research and Development Program of China (863 Program) (2006AA04Z182)
文摘This paper deals with the problem of the absolute stability for general neutral type Lurie indirect control systems by Lyapunov method and linear matrix inequality (LMI) technique. Delay-dependent sufficient conditions for the absolute stability are derived and expressed as the feasibility problem of LMI, which can be easily solved by Matlab Toolbox. Finally, some examples are provide to demonstrate the effectiveness of proposed method.
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are convenient in application.
基金supported by the National Natural Science Foundation of China(Nos.60835001,60875035,60904023,61004032,61004064, 11071001)the Special Foundation of China Postdoctoral Science Foundation Projects(No.201003546)+3 种基金the Doctoral Fund of Ministry of Education of China(No.20093401110001)the Major Program of Educational Commission of Anhui Province of China(No.KJ2010ZD02)the Program of Natural Science Research in Anhui Universities(No.KJ2011A020)the 211 Project of Anhui University(No.KJQN1001)
文摘In this paper, the absolute stability of Lurie control system with probabilistic time-varying delay is studied. By using a new extended Lyapunov-Krasovskii functional, an improved stability criterion based on LMIs is presented and its solvability heavily depends on the sizes of both the delay range and its derivatives, which has wider application fields than those present results. The efficiency and reduced conservatism of the presented results can be demonstrated by two numerical examples with giving some comparing results.
文摘In this paper. it is discussed that the absohue stability for zero solution of thediscrete type Lurie control systmin which the nonlinear function f(σ) satisfying conditions as followsIt gives the necessary and sufficent conditions for the absolute stability forystem (I) under conditions (2).We also obtain the sufficient criteria for absolutesiability of the simplified system of (I) under conditions (3) .
文摘In this paper, the problem of absolute stability of continuous time with parametric nonlinear system uncertainty of a linear part and sector uncertainty of its nonlinear part is considered, the and sufficient conditions for absolute stability of direct and indirect control systems are presented. The corresponding results for robust absolute stability are improved.
文摘Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is of vitul importance in control theory and its applications. Many researchers have studied the stability criteria of systems with constant delay or bound varying time delay, but few of them studied large time delay or unbound time delay. Large time delay existes commonly in various engineering applications. In this paper, the absolute stability of Lurie type direct control systems and indirect control systems with several time delays are discussed. Based on Lyapunov theory, the new delay dependent absolute stability criteria are derived. In our theorem, time delays can be unbound functions, which shows that the results are less conservative than that of existed criteria.
文摘In this paper, we give necessary and sufficient conditions for absolute stability of several classes of direct control systems, and discuss the absolute stability of the first canonical form of control system. The corresponding results in references [3,5,6] and [7] are improved.