In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the sys...In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.展开更多
In this paper the Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems are studied. The determining equation of the Lie symmetry for the system is given. The general Hojman conserved quantity...In this paper the Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems are studied. The determining equation of the Lie symmetry for the system is given. The general Hojman conserved quantity and the Lutzky conserved quantity deduced from the symmetry are obtained.展开更多
In this paper, we study Lie symmetry and conserved quantities for a mechanical-electrical system. The criterion of the Lie symmetry for this system is given. The generalized Hojman conserved quantity and generalized L...In this paper, we study Lie symmetry and conserved quantities for a mechanical-electrical system. The criterion of the Lie symmetry for this system is given. The generalized Hojman conserved quantity and generalized Lutzky conserved quantity deduced from the Lie symmetry for the system are obtained. An example is presented to illustrate the results.展开更多
In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-...In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.展开更多
文摘In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.
文摘In this paper the Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems are studied. The determining equation of the Lie symmetry for the system is given. The general Hojman conserved quantity and the Lutzky conserved quantity deduced from the symmetry are obtained.
文摘In this paper, we study Lie symmetry and conserved quantities for a mechanical-electrical system. The criterion of the Lie symmetry for this system is given. The generalized Hojman conserved quantity and generalized Lutzky conserved quantity deduced from the Lie symmetry for the system are obtained. An example is presented to illustrate the results.
基金Project supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10672143, 10471145 and 10372053) and the Natural Science Foundation of Henan Province Government of China(Grant Nos 0511022200 and 0311011400).
文摘In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.