A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East C...A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre circulation at the intermediate depth has been confirmed by the dynamic height calculation based on the Levitus hydrography data. The sandwich transports in the Luzon Strait are consistent with recent hydrographical observations.Model results suggest that the Kuroshio tends to form a loop current in the northeastern South China Sea. The simulated Kuroshio Loop Current is generated by the pressure head at the Pacific side of the Luzon Strait and is enhanced by the β-plane effects. The β - plane appears to be of paramount importance to the South China Sea circulation and to the Luzon Strait transports. Without the β-plane, theLuzon Strait transports would be greatly reduced and the South China Sea circulation would be complete-ly different.展开更多
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution globa...The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.展开更多
Based on the output data from 1997 to 2000 obtained by the MITgcm's(general circulation model)adjoint assimilation method, volume, heat and salt transports through the Luzon Strait are calculated. The results indi...Based on the output data from 1997 to 2000 obtained by the MITgcm's(general circulation model)adjoint assimilation method, volume, heat and salt transports through the Luzon Strait are calculated. The results indicate that there are obvious different characteristics between 1997 and 1998~2000 on the transports through the Luzon Strait. During 1997, the Luzon Strait had a mean net westward transport of 3.93 ×106 m3/s with a maximum transport of 7.34×106 m3/s in October. During 1998~2000, the Luzon Strait possessed an annual mean eastward transport of 0.93 ×106 , 1.80 ×106 and 1.00 ×106 m3/s respectively with a maximum eastward transport of 4.10 ×106 /3.31 ×106 m3/s in July 1998/ 1999 and 2.06 ×106 m3/s in April 2000, respectively. Moreover, the transports in 1997 indicated a difference from the other years, i.e., that the ranges of westward inflows expanded more obviously to north of the Luzon Strait and downwards exceeding those of the other years. The westward inflows expanded horizontally to the north part of the Luzon Strait until 21o N.展开更多
Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that...Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that in winter the volume transport (4.45×106 m3/s) is far larger than that in the summer (2.0 ×106 m3/s), respectively being about equal to 15.0% and 6.9% of the Kuroshio.And the paths of water in and out of the section of the strait vary distinctly with the season. In summer, the water flows in and out of the South China Sea (SCS) three times: that is, the inlet passages almost appear on the southern sides of the three deep troughs,the outlet passages are all located on the northern sides of the troughs,and the in-out volume transports through the channel are not lower than 4.0×106 m3/s. The highest velocity (>80 cm/s) and the largest entering water capacity (6.6×106 m3/s) all occur in the Balintang Channel. Except for the north outlet passage in the section, all the higher velocities over 10 cm/s are mainly distributed on the layer above 500 m. In winter,the water flows in and out of the strait two times:the southern sides of the second and third deep troughs are the main passages of the Kuroshio water running into the SCS,while the whole section of the first deep trough and the bottom section of the second deep trough are the outlet passages.The higher velocities over 10 cm/s are almost distributed on the layer above 300 m. Numerical calculation shows that the northern side of the third trough may be the outlet passage.展开更多
The properties of salinity in the South China Sea(SCS),a significant marginal sea connecting the Pacific and Indian Oceans,are greatly influenced by the transport of fresh water flux between the two oceans.However,the...The properties of salinity in the South China Sea(SCS),a significant marginal sea connecting the Pacific and Indian Oceans,are greatly influenced by the transport of fresh water flux between the two oceans.However,the long-term changes in the intermediate water in the SCS have not been thoroughly studied due to limited data,particularly in relation to its thermodynamic variations.This study utilized reanalysis data products to identify a 60-year trend of freshening in the intermediate waters of the northern South China Sea(NSCS),accompanied by an expansion of low-salinity water.The study also constructed salinity budget terms,including advection and entrainment processes,and conducted an analysis of the salinity budget to understand the impacts of external and internal dynamic processes on the freshening trend of the intermediate water in the NSCS.The analysis revealed that the freshening in the northwest Pacific Ocean and the intensification of intrusion through the Luzon Strait at intermediate levels are the primary drivers of the salinity changes in the NSCS.Additionally,a weakened trend in the intensity of vertical entrainment also contributes to the freshening in the NSCS.This study offers new insights into the understanding of regional deep sea changes in response to variations in both thermodynamics and oceanic dynamic processes.展开更多
Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and t...Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and the Simple Ocean Data Assimilation dataset. Results show that LST increased but ITF transport decreased after 1975. Such changes were induced by variations in wind stress associated with the regime shift. The strengthening of the easterly wind anomaly east of the Luzon Strait played an important role in the increase of LST after 1975, while the westerly wind anomaly in the equatorial Pacific contributed significantly to the decrease in ITF transport after 1975; accounting for 53% of the change. After 1975, the Kuroshio Current strengthened and the Mindanao Current weakened in response to a decrease in the total transport of the North Equatorial Current. Both the North Equatorial Countercurrent and the South Equatorial Current weakened after 1975, and an anomalous cyclonic circulation in the western equatorial Pacific prevented the tropical Pacific water from entering the Indian Ocean directly.展开更多
在利用1950—2009年NCEP(National Center for Environmental Prediction)资料分析风场数据的基础上,计算吕宋海峡的Ekman输运,研究表明其存在显著的季节变化,除了夏季外,其它季节均为由太平洋向南海输运。分析吕宋海峡Ekman输运和南海...在利用1950—2009年NCEP(National Center for Environmental Prediction)资料分析风场数据的基础上,计算吕宋海峡的Ekman输运,研究表明其存在显著的季节变化,除了夏季外,其它季节均为由太平洋向南海输运。分析吕宋海峡Ekman输运和南海海盆表征上层热力状况的海表面温度SST(Sea Surface Temperature)之间的关系发现:在年内时间尺度上,两者不存在显著的同期相关,Ekman输运对SST的影响开始于一个月之后,从北部向南扩展,第二个月最为明显,并扩展至整个海盆,第三个月开始衰减,第四个月影响消失,且相关性为正;在年际尺度上,吕宋海峡Ek-man输运的异常同南海SSTA(Sea Surface Temperature Abnormal)的第二模态存在显著的相关联系,并且吕宋海峡Ekman输运和南海SSTA的相关关系在北部为正,南部为负。吕宋海峡Ekman输运调制南海大尺度环流,通过暖、冷平流的作用影响南海SST的变化。展开更多
Seasonal variations of water exchange in the Luzon Strait are studied numerically using the improved Princeton Ocean Model (POM) with a consideration of the effects of connectivity of South China Sea (SCS) and mon...Seasonal variations of water exchange in the Luzon Strait are studied numerically using the improved Princeton Ocean Model (POM) with a consideration of the effects of connectivity of South China Sea (SCS) and monsoons. The numerical simulations are carried out with the strategy of variable grids, coarse grids for the Pacific basin and fine grids for the SCS. It is shown that the Mindoro Strait plays an important role in adjusting the water balance between the Pacific and the SCS. The SCS monsoon in summer seasons hinders the entrance of the Pacific water into the SCS through the Luzon Strait while the SCS monsoon in winter seasons promotes the entrance of Pacific water into the SCS through the Luzon Strait. However, the SCS monsoon does not affect the annual mean Luzon Strait transport, as is mainly determined by the Pacific basin wind.展开更多
In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to in...In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea (SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.展开更多
The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. ...The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport(LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current(NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon.展开更多
基金This study was supported by the Major State Basic Research Program under contract Grant No. 19990 43806'
文摘A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre circulation at the intermediate depth has been confirmed by the dynamic height calculation based on the Levitus hydrography data. The sandwich transports in the Luzon Strait are consistent with recent hydrographical observations.Model results suggest that the Kuroshio tends to form a loop current in the northeastern South China Sea. The simulated Kuroshio Loop Current is generated by the pressure head at the Pacific side of the Luzon Strait and is enhanced by the β-plane effects. The β - plane appears to be of paramount importance to the South China Sea circulation and to the Luzon Strait transports. Without the β-plane, theLuzon Strait transports would be greatly reduced and the South China Sea circulation would be complete-ly different.
基金The Ministry of Science and Technology of China (National Key Program for Developing Basic Science) undercontract No. 2007CB411803the National 863 High-tech Program under contract No. 2008AA09A402.
文摘The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.
基金the National Science Foundatim of China under contract No 40136010 ,40076007.
文摘Based on the output data from 1997 to 2000 obtained by the MITgcm's(general circulation model)adjoint assimilation method, volume, heat and salt transports through the Luzon Strait are calculated. The results indicate that there are obvious different characteristics between 1997 and 1998~2000 on the transports through the Luzon Strait. During 1997, the Luzon Strait had a mean net westward transport of 3.93 ×106 m3/s with a maximum transport of 7.34×106 m3/s in October. During 1998~2000, the Luzon Strait possessed an annual mean eastward transport of 0.93 ×106 , 1.80 ×106 and 1.00 ×106 m3/s respectively with a maximum eastward transport of 4.10 ×106 /3.31 ×106 m3/s in July 1998/ 1999 and 2.06 ×106 m3/s in April 2000, respectively. Moreover, the transports in 1997 indicated a difference from the other years, i.e., that the ranges of westward inflows expanded more obviously to north of the Luzon Strait and downwards exceeding those of the other years. The westward inflows expanded horizontally to the north part of the Luzon Strait until 21o N.
文摘Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that in winter the volume transport (4.45×106 m3/s) is far larger than that in the summer (2.0 ×106 m3/s), respectively being about equal to 15.0% and 6.9% of the Kuroshio.And the paths of water in and out of the section of the strait vary distinctly with the season. In summer, the water flows in and out of the South China Sea (SCS) three times: that is, the inlet passages almost appear on the southern sides of the three deep troughs,the outlet passages are all located on the northern sides of the troughs,and the in-out volume transports through the channel are not lower than 4.0×106 m3/s. The highest velocity (>80 cm/s) and the largest entering water capacity (6.6×106 m3/s) all occur in the Balintang Channel. Except for the north outlet passage in the section, all the higher velocities over 10 cm/s are mainly distributed on the layer above 500 m. In winter,the water flows in and out of the strait two times:the southern sides of the second and third deep troughs are the main passages of the Kuroshio water running into the SCS,while the whole section of the first deep trough and the bottom section of the second deep trough are the outlet passages.The higher velocities over 10 cm/s are almost distributed on the layer above 300 m. Numerical calculation shows that the northern side of the third trough may be the outlet passage.
基金National Natural Science Foundation of China(92158204,42076019)Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(31020004)Open Project of the State Key Laboratory of Tropical Oceanography(LTOZZ2001)。
文摘The properties of salinity in the South China Sea(SCS),a significant marginal sea connecting the Pacific and Indian Oceans,are greatly influenced by the transport of fresh water flux between the two oceans.However,the long-term changes in the intermediate water in the SCS have not been thoroughly studied due to limited data,particularly in relation to its thermodynamic variations.This study utilized reanalysis data products to identify a 60-year trend of freshening in the intermediate waters of the northern South China Sea(NSCS),accompanied by an expansion of low-salinity water.The study also constructed salinity budget terms,including advection and entrainment processes,and conducted an analysis of the salinity budget to understand the impacts of external and internal dynamic processes on the freshening trend of the intermediate water in the NSCS.The analysis revealed that the freshening in the northwest Pacific Ocean and the intensification of intrusion through the Luzon Strait at intermediate levels are the primary drivers of the salinity changes in the NSCS.Additionally,a weakened trend in the intensity of vertical entrainment also contributes to the freshening in the NSCS.This study offers new insights into the understanding of regional deep sea changes in response to variations in both thermodynamics and oceanic dynamic processes.
基金supported by the Chinese Academy of Sciences' Knowledge Innovation Program (Grant Nos.KZCX2-YW-214 and KZCX2-YW-BR-04)the National Natural Science Foundation of China (Grant Nos.40806005,40640420557 and 40625017)supported by a grant from the City University of Hong Kong (Project No. 7002329)
文摘Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and the Simple Ocean Data Assimilation dataset. Results show that LST increased but ITF transport decreased after 1975. Such changes were induced by variations in wind stress associated with the regime shift. The strengthening of the easterly wind anomaly east of the Luzon Strait played an important role in the increase of LST after 1975, while the westerly wind anomaly in the equatorial Pacific contributed significantly to the decrease in ITF transport after 1975; accounting for 53% of the change. After 1975, the Kuroshio Current strengthened and the Mindanao Current weakened in response to a decrease in the total transport of the North Equatorial Current. Both the North Equatorial Countercurrent and the South Equatorial Current weakened after 1975, and an anomalous cyclonic circulation in the western equatorial Pacific prevented the tropical Pacific water from entering the Indian Ocean directly.
文摘在利用1950—2009年NCEP(National Center for Environmental Prediction)资料分析风场数据的基础上,计算吕宋海峡的Ekman输运,研究表明其存在显著的季节变化,除了夏季外,其它季节均为由太平洋向南海输运。分析吕宋海峡Ekman输运和南海海盆表征上层热力状况的海表面温度SST(Sea Surface Temperature)之间的关系发现:在年内时间尺度上,两者不存在显著的同期相关,Ekman输运对SST的影响开始于一个月之后,从北部向南扩展,第二个月最为明显,并扩展至整个海盆,第三个月开始衰减,第四个月影响消失,且相关性为正;在年际尺度上,吕宋海峡Ek-man输运的异常同南海SSTA(Sea Surface Temperature Abnormal)的第二模态存在显著的相关联系,并且吕宋海峡Ekman输运和南海SSTA的相关关系在北部为正,南部为负。吕宋海峡Ekman输运调制南海大尺度环流,通过暖、冷平流的作用影响南海SST的变化。
基金Project supported by the National Natural Science Foundation of China(Grant No.90411013)the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science and Technology of China During the11th Five-year Plan(Grant No.2006BAC03B04)also supported by the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX1-YW-12,KZCX2-YW-201).
文摘Seasonal variations of water exchange in the Luzon Strait are studied numerically using the improved Princeton Ocean Model (POM) with a consideration of the effects of connectivity of South China Sea (SCS) and monsoons. The numerical simulations are carried out with the strategy of variable grids, coarse grids for the Pacific basin and fine grids for the SCS. It is shown that the Mindoro Strait plays an important role in adjusting the water balance between the Pacific and the SCS. The SCS monsoon in summer seasons hinders the entrance of the Pacific water into the SCS through the Luzon Strait while the SCS monsoon in winter seasons promotes the entrance of Pacific water into the SCS through the Luzon Strait. However, the SCS monsoon does not affect the annual mean Luzon Strait transport, as is mainly determined by the Pacific basin wind.
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A506the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404+1 种基金the National Basic Research Program(973 Program)of China under contract No.2011CB956000the National Natural Science Foundation of China under contract No.40476016
文摘In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea (SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010302the National Natural Science Foundation of China under contract No.41376009the Joint Program of Shandong Province and National Natural Science Foundation of China under contract No.U1406401
文摘The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport(LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current(NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon.