This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S...This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.展开更多
Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodu...Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematica...The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.展开更多
This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valu...This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.展开更多
The stabilization of discrete nonlinear systems is studied. Based on control Lyapunov functions, a sufficient and necessary condition for a quadratic function to be a control Lyapunov function is given. From this cond...The stabilization of discrete nonlinear systems is studied. Based on control Lyapunov functions, a sufficient and necessary condition for a quadratic function to be a control Lyapunov function is given. From this condition, a continuous state feedback law is constructed explicitly. It can globally asymptotically stabilize the equilibrium of the closed-loop system. A simulation example shows the effectiveness of the proposed method.展开更多
A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the clos...A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the closed-loop system. In addition, this method is applied to stabilize the Benchmark system. A simulation shows the effectiveness of the method.展开更多
In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an outp...In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly characterized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable switched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attaine...This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.展开更多
The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that th...The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.展开更多
This paper presents delay-dependent stability analysis and controller synthesis methods for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy system is transformed to an equivalent swit...This paper presents delay-dependent stability analysis and controller synthesis methods for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy system is transformed to an equivalent switching fuzzy system. Consequently, the delay-dependent stabilization criteria are derived for the switching fuzzy system based on the piecewise Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered in each subregion, and accordingly the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. Finally, a design example is given to show the validity of the proposed method.展开更多
Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is ...Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.展开更多
For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It...For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It is shown that the constructed control remains effective in the presence of small perturbations.展开更多
Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic st...Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic stability conditions have been established in terms of linear matrix inequalities (LMIs). It is shown that the stability in the mean square for T-S fuzzy bilinear stochastic systems can be established if a PQLF can be constructed. Considering the established stability criterion, the controller can be designed by solving a set of (LMIs), and the closed loop system is asymptotically stable in the mean square. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62176140)。
文摘This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.
文摘Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
基金Supported by Natural Science Foundation of Zhejiang Province P. R. China (Y105141)Natural Science Foundation of Fujian Province P.R.China (A0510025)Technological Project of Zhejiang Education Department,P. R. China(20050291)
文摘The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.
文摘This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.
基金the Natural Science Foundation of China (60774011)the Natural ScienceFoundation of Zhejiang Province in China (Y105141)
文摘The stabilization of discrete nonlinear systems is studied. Based on control Lyapunov functions, a sufficient and necessary condition for a quadratic function to be a control Lyapunov function is given. From this condition, a continuous state feedback law is constructed explicitly. It can globally asymptotically stabilize the equilibrium of the closed-loop system. A simulation example shows the effectiveness of the proposed method.
基金the Natural Science Foundation of Zhejiang Province,China (Y105141)Technological Project of Zhejiang Education Department,China (20050291).
文摘A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the closed-loop system. In addition, this method is applied to stabilize the Benchmark system. A simulation shows the effectiveness of the method.
文摘In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly characterized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable switched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
基金Project partially supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No. 101005)the National Natural Science Foundation of China (Grant No. 60904004)the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No. L08010201JX0720)
文摘This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.
文摘The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.
基金supported by the National Natural Science Foundation of China (No.60804021)
文摘This paper presents delay-dependent stability analysis and controller synthesis methods for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy system is transformed to an equivalent switching fuzzy system. Consequently, the delay-dependent stabilization criteria are derived for the switching fuzzy system based on the piecewise Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered in each subregion, and accordingly the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. Finally, a design example is given to show the validity of the proposed method.
文摘Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.
基金supported by Russian Foundation for Basic Research(Grant No.08-01-00234,08-01-00411,08-08- 00292)
文摘For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It is shown that the constructed control remains effective in the presence of small perturbations.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61304063, in part by the Fundamental Research Funds for the Central Universities under Grant 72103676, in part by the Science and Technology Research Foundation of Yanan under Grant 2013-KG16, in part by Yanan University under Grant YDBK2013-12, 2012SXTS07.
文摘Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic stability conditions have been established in terms of linear matrix inequalities (LMIs). It is shown that the stability in the mean square for T-S fuzzy bilinear stochastic systems can be established if a PQLF can be constructed. Considering the established stability criterion, the controller can be designed by solving a set of (LMIs), and the closed loop system is asymptotically stable in the mean square. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.