The local robust stabilization for a class of nonlinear uncertain systems is studied. The robustness concept of Lyapunov type stabilizability for nonlinear uncertain systems is defined. Under the norm bounded struct...The local robust stabilization for a class of nonlinear uncertain systems is studied. The robustness concept of Lyapunov type stabilizability for nonlinear uncertain systems is defined. Under the norm bounded structured condition, two cases for uncertainty in control matrix are taken to discuss Lyapunov type stabilizability of systems. The sufficient conditions of Lyapunov type stabilization are given from differential geometry and nonlinear H ∞ control of view, respectively.展开更多
In this paper,we consider the fixed-time stabilization control problem of quantum systems modeled by Schrodinger equations.Firstly,the Lyapunov-based fixed-time stability criterion is extended to finitedimensional clo...In this paper,we consider the fixed-time stabilization control problem of quantum systems modeled by Schrodinger equations.Firstly,the Lyapunov-based fixed-time stability criterion is extended to finitedimensional closed quantum systems in the form of coherence vectors.Then for a two-level quantum system with single control input,a non-smooth fractional-order control law is designed using the relative state distance.By integrating the fixed-time Lyapunov control technique and the bi-limit homogeneity theory,the quantum system is proved to be stabilized to an eigenstate of the inherent Hamiltonian in a fixed time.Comparing with existing methods in quantum system control,the proposed approach can guarantee stabilization in a fixed time without depending on the initial states.展开更多
The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying L...The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.展开更多
This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact...This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.展开更多
This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker ca...This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker caused by different types of disturbance torques and the scale deviation of different sensors are established.The optimal DRR model of the roll-pitch seeker,which contains the scale deviation model,is proposed by formula derivation.The model of the roll-pitch seeker's guidance system is established and equivalently simplified by the dimensionless method.The Lyapunov stability criterion for stability analysis of the guidance system is given by means of the passivity theorem and related definitions and lemmas.A simplified model of the roll-pitch seeker's guidance system,which is suitable for the Lyapunov stability criterion,is established by formula derivation and equivalent transformation.Three conditions that satisfy the Lyapunov stability criterion are obtained.Mathematical simulation with Nyquist plots is used to analyze the influence of different DRR parameters on the stability domain of the roll-pitch seeker's guidance system.Simulation results of this paper can provide reference for the stability analysis of systems related to the roll-pitch seeker.展开更多
Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the firs...Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.展开更多
In the paper Lyapunov function for a fourth order linear system is given and stability of the trivial solutions to a class of.fourth order nonlinear systems is studied
A nonlinear state observer design with sampled and delayed output measurements for variable speed and external load torque estimations of SPMSM drive system has been addressed, successfully. Sampled output state predi...A nonlinear state observer design with sampled and delayed output measurements for variable speed and external load torque estimations of SPMSM drive system has been addressed, successfully. Sampled output state predictor is re-initialized at each sampling instant and remains continuous between two sampling instants. Throughout this study, a positive constant to satisfy an upper limit of the sampling period between sampling instants and allowable timing delay in terms of observer parameters has been prepared such that the exponential stable of the closed-loop system is guaranteed, based on Lyapunov stability tools. In order to validate the theoretical results introduced by main fundamental theorem to prove the observer convergence, the proposed sampled-data observer is demonstrated through a sample study application to variable speed SPMSM drive system.展开更多
The dynamics of a turbogenerator are characterized by a nonlinearly interacting electrical and mechanical subsystems. Accurate and robust state reconstruction by an observer should be based on its nonlinear dynamic be...The dynamics of a turbogenerator are characterized by a nonlinearly interacting electrical and mechanical subsystems. Accurate and robust state reconstruction by an observer should be based on its nonlinear dynamic behavior. Linear and reduced order observers are undesired since intolerable error of state reconstruction may be expected especially if the operating conditions and/or the external disturbances are, as usual in modern power systems, extremely changed. The 2nd authors of this paper had published a methodical design of a full order nonlinear observer for turbogenerator systems and conducted its experimental validation on a 120 MVA and 1,000 MVA synchronous generators at Gud-Power Station in south Munich (Germany) and the Nuclear Power Station of Goesgen (Switzerland). In this paper, the Lyapunov's stability is applied to the mechanical slow motion of nonlinear observer. A second order Lyapunov function is introduced. Based on the energy interpretations of its terms, the necessary and sufficient conditions for the asymptotic stability of this nonlinear observer are derived.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a no...This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.展开更多
An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.Th...An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.The relative motion equation of the missile and the target considering the impact angle constraint is established in the longitudinal plane,and an integral sliding mode surface is constructed.The proposed guidance law resolves the existence of a steady-state error problem in the traditional SMC.Such a guidance law ensures that the missile hits the target with an ideal impact angle in finite time and the missile is kept highly robust throughout the interception process.By adopting the dynamic surface control method,the ISMGL is designed considering the impact angle constraints and the autopilot dynamic characteristics.According to the Lyapunov stability theorem,all states of the closed-loop system are finally proven to be uniformly bounded.Simulation results are compared with the general sliding mode guidance law and the trajectory shaping guidance law,and the findings verify the effectiveness and superiority of the ISMGL.展开更多
This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical n...This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.展开更多
Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in t...Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented...This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.展开更多
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T...A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.展开更多
Two model reference adaptive system (MRAS) estimators are developed for identifying the parameters of permanent magnet synchronous motors (PMSM) based on the Lyapunov stability theorem and the Popov stability crit...Two model reference adaptive system (MRAS) estimators are developed for identifying the parameters of permanent magnet synchronous motors (PMSM) based on the Lyapunov stability theorem and the Popov stability criterion, respectively. The proposed estimators only need online measurement of currents, voltages, and rotor speed to effectively estimate stator resistance, inductance, and rotor flux-linkage simultaneously. The performance of the estimators is compared and verified through simulations and experiments, which show that the two estimators are simple, have good robustness against parameter variation, and are accurate in parameter tracking. However, the estimator based on the Popov stability criterion, which can overcome parameter variation in a practical system, is superior in terms of response speed and convergence speed since there are both proportional and integral units in the estimator, in contrast to only one integral unit in the estimator based on the Lyapunov stability theorem. In addition, the estimator based on the Popov stability criterion does not need the expertise that is required in designing a Lyapunov function.展开更多
This paper deals with the communication problem in the distributed system, considering the limited battery power in the wireless network and redundant transmission among nodes. We design an event-triggered model predi...This paper deals with the communication problem in the distributed system, considering the limited battery power in the wireless network and redundant transmission among nodes. We design an event-triggered model predictive control(ET-MPC) strategy to reduce the unnecessary communication while promising the system performance. On one hand, for a linear discrete time-invariant system, a triggering condition is derived based on the Lyapunov stability. Here, in order to further reduce the communication rate, we enforce a triggering condition only when the Lyapunov function will exceed its value at the last triggered time, but an average decrease is guaranteed. On the other hand, the feasibility is ensured by minimizing and optimizing the terminal constrained set between the maximal control invariant set and the target terminal set. Finally, we provide a simulation to verify the theoretical results. It's shown that the proposed strategy achieves a good trade-off between the closed-loop system performance and communication rate.展开更多
An improved hybrid position/force controller design of a flexible robot manipulator is presented using a sliding observer. The friction between the end effector and the environment is considered and compensated. For s...An improved hybrid position/force controller design of a flexible robot manipulator is presented using a sliding observer. The friction between the end effector and the environment is considered and compensated. For systematic reasons the controller is designed taking into consideration the rigid link subsystems and the flexible joints. The proposed control system satisfies the stability of the two subsystems and copes with the uncertainty of robot dynamics. A sliding observer is designed to estimate the time derivative of the torque applied as input to the rigid part of the robot. For the stability of the observer, it is assumed that the uncertainty of the observed system is bounded. A MRAC algorithm is used for the estimation of the friction forces at the contact point between the end effector and the environment. Finally simulation and experimental results are given, to demonstrate the effectiveness of the proposed controller.展开更多
To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee...To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.展开更多
文摘The local robust stabilization for a class of nonlinear uncertain systems is studied. The robustness concept of Lyapunov type stabilizability for nonlinear uncertain systems is defined. Under the norm bounded structured condition, two cases for uncertainty in control matrix are taken to discuss Lyapunov type stabilizability of systems. The sufficient conditions of Lyapunov type stabilization are given from differential geometry and nonlinear H ∞ control of view, respectively.
基金This work is supported in part by the Ministry of Education(MOE),Singapore under Grant MOE2020-T1-1-067also partially supported by the National Natural Science Foundation of China under Grants 62103352 and 61903319.
文摘In this paper,we consider the fixed-time stabilization control problem of quantum systems modeled by Schrodinger equations.Firstly,the Lyapunov-based fixed-time stability criterion is extended to finitedimensional closed quantum systems in the form of coherence vectors.Then for a two-level quantum system with single control input,a non-smooth fractional-order control law is designed using the relative state distance.By integrating the fixed-time Lyapunov control technique and the bi-limit homogeneity theory,the quantum system is proved to be stabilized to an eigenstate of the inherent Hamiltonian in a fixed time.Comparing with existing methods in quantum system control,the proposed approach can guarantee stabilization in a fixed time without depending on the initial states.
文摘The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.
基金supported by the National Natural Science Foundation of China(5137917651679201)
文摘This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-optical Equipment Institute,Aviation Industry Corporation of China(6142504200108)。
文摘This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker caused by different types of disturbance torques and the scale deviation of different sensors are established.The optimal DRR model of the roll-pitch seeker,which contains the scale deviation model,is proposed by formula derivation.The model of the roll-pitch seeker's guidance system is established and equivalently simplified by the dimensionless method.The Lyapunov stability criterion for stability analysis of the guidance system is given by means of the passivity theorem and related definitions and lemmas.A simplified model of the roll-pitch seeker's guidance system,which is suitable for the Lyapunov stability criterion,is established by formula derivation and equivalent transformation.Three conditions that satisfy the Lyapunov stability criterion are obtained.Mathematical simulation with Nyquist plots is used to analyze the influence of different DRR parameters on the stability domain of the roll-pitch seeker's guidance system.Simulation results of this paper can provide reference for the stability analysis of systems related to the roll-pitch seeker.
文摘Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.
文摘In the paper Lyapunov function for a fourth order linear system is given and stability of the trivial solutions to a class of.fourth order nonlinear systems is studied
文摘A nonlinear state observer design with sampled and delayed output measurements for variable speed and external load torque estimations of SPMSM drive system has been addressed, successfully. Sampled output state predictor is re-initialized at each sampling instant and remains continuous between two sampling instants. Throughout this study, a positive constant to satisfy an upper limit of the sampling period between sampling instants and allowable timing delay in terms of observer parameters has been prepared such that the exponential stable of the closed-loop system is guaranteed, based on Lyapunov stability tools. In order to validate the theoretical results introduced by main fundamental theorem to prove the observer convergence, the proposed sampled-data observer is demonstrated through a sample study application to variable speed SPMSM drive system.
文摘The dynamics of a turbogenerator are characterized by a nonlinearly interacting electrical and mechanical subsystems. Accurate and robust state reconstruction by an observer should be based on its nonlinear dynamic behavior. Linear and reduced order observers are undesired since intolerable error of state reconstruction may be expected especially if the operating conditions and/or the external disturbances are, as usual in modern power systems, extremely changed. The 2nd authors of this paper had published a methodical design of a full order nonlinear observer for turbogenerator systems and conducted its experimental validation on a 120 MVA and 1,000 MVA synchronous generators at Gud-Power Station in south Munich (Germany) and the Nuclear Power Station of Goesgen (Switzerland). In this paper, the Lyapunov's stability is applied to the mechanical slow motion of nonlinear observer. A second order Lyapunov function is introduced. Based on the energy interpretations of its terms, the necessary and sufficient conditions for the asymptotic stability of this nonlinear observer are derived.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
文摘This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.
基金supported by the Joint Equipment Fund of the Ministry of Education(6141A02022340)
文摘An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.The relative motion equation of the missile and the target considering the impact angle constraint is established in the longitudinal plane,and an integral sliding mode surface is constructed.The proposed guidance law resolves the existence of a steady-state error problem in the traditional SMC.Such a guidance law ensures that the missile hits the target with an ideal impact angle in finite time and the missile is kept highly robust throughout the interception process.By adopting the dynamic surface control method,the ISMGL is designed considering the impact angle constraints and the autopilot dynamic characteristics.According to the Lyapunov stability theorem,all states of the closed-loop system are finally proven to be uniformly bounded.Simulation results are compared with the general sliding mode guidance law and the trajectory shaping guidance law,and the findings verify the effectiveness and superiority of the ISMGL.
基金Project supported by the Natural Science Foundation of Liaoning Province,China(Grant No.20082147)the Innovative Team Program of Liaoning Educational Committee,China(Grant No.2008T108)
文摘This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.
文摘Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金supported by the National Natural Science Foundation of China(61473226)
文摘This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.
文摘A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.
基金supported by China Scholarship Council, National Natural Science Foundation of China (No. 60634020)Scientific Research Foundation of Education Ministry for the Doctors(No. 20060532026)
文摘Two model reference adaptive system (MRAS) estimators are developed for identifying the parameters of permanent magnet synchronous motors (PMSM) based on the Lyapunov stability theorem and the Popov stability criterion, respectively. The proposed estimators only need online measurement of currents, voltages, and rotor speed to effectively estimate stator resistance, inductance, and rotor flux-linkage simultaneously. The performance of the estimators is compared and verified through simulations and experiments, which show that the two estimators are simple, have good robustness against parameter variation, and are accurate in parameter tracking. However, the estimator based on the Popov stability criterion, which can overcome parameter variation in a practical system, is superior in terms of response speed and convergence speed since there are both proportional and integral units in the estimator, in contrast to only one integral unit in the estimator based on the Lyapunov stability theorem. In addition, the estimator based on the Popov stability criterion does not need the expertise that is required in designing a Lyapunov function.
基金supported by the National Natural Science Foundation of China(61233004,61590924,61521063)
文摘This paper deals with the communication problem in the distributed system, considering the limited battery power in the wireless network and redundant transmission among nodes. We design an event-triggered model predictive control(ET-MPC) strategy to reduce the unnecessary communication while promising the system performance. On one hand, for a linear discrete time-invariant system, a triggering condition is derived based on the Lyapunov stability. Here, in order to further reduce the communication rate, we enforce a triggering condition only when the Lyapunov function will exceed its value at the last triggered time, but an average decrease is guaranteed. On the other hand, the feasibility is ensured by minimizing and optimizing the terminal constrained set between the maximal control invariant set and the target terminal set. Finally, we provide a simulation to verify the theoretical results. It's shown that the proposed strategy achieves a good trade-off between the closed-loop system performance and communication rate.
文摘An improved hybrid position/force controller design of a flexible robot manipulator is presented using a sliding observer. The friction between the end effector and the environment is considered and compensated. For systematic reasons the controller is designed taking into consideration the rigid link subsystems and the flexible joints. The proposed control system satisfies the stability of the two subsystems and copes with the uncertainty of robot dynamics. A sliding observer is designed to estimate the time derivative of the torque applied as input to the rigid part of the robot. For the stability of the observer, it is assumed that the uncertainty of the observed system is bounded. A MRAC algorithm is used for the estimation of the friction forces at the contact point between the end effector and the environment. Finally simulation and experimental results are given, to demonstrate the effectiveness of the proposed controller.
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.706043)Hunan Provincial Natural Science Foundation of China (No.06JJ50121)the National Natural Science Foundation of China (No.60775047).
文摘To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.